-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasr.py
40 lines (30 loc) · 1.06 KB
/
asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import logging
import random
import torch
import platalea.asr as M
import platalea.dataset as D
from platalea.experiments.config import args
# Parsing arguments
args.enable_help()
args.parse()
# Setting general configuration
torch.manual_seed(args.seed)
random.seed(args.seed)
# Logging the arguments
logging.info('Arguments: {}'.format(args))
batch_size = 8
logging.info('Loading data')
data = dict(
train=D.flickr8k_loader(
args.flickr8k_root, args.flickr8k_meta, args.flickr8k_language,
args.audio_features_fn, split='train', batch_size=batch_size,
shuffle=True, downsampling_factor=args.downsampling_factor),
val=D.flickr8k_loader(
args.flickr8k_root, args.flickr8k_meta, args.flickr8k_language,
args.audio_features_fn, split='val', batch_size=batch_size,
shuffle=False))
logging.info('Building model')
net = M.SpeechTranscriber(M.get_default_config())
run_config = dict(max_norm=2.0, max_lr=2 * 1e-4, epochs=args.epochs)
logging.info('Training')
M.experiment(net, data, run_config, slt=data['train'].dataset.is_slt())