-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_esm.py
115 lines (97 loc) · 4.05 KB
/
extract_esm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
torch.hub.set_dir('./th_hub')
from pathlib import Path
from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained
import os
import gzip
from tqdm import tqdm
class GzippedFastaBatchedDataset(FastaBatchedDataset):
@classmethod
def from_file(cls, fasta_file):
sequence_labels, sequence_strs = [], []
cur_seq_label = None
buf = []
def _flush_current_seq():
nonlocal cur_seq_label, buf
if cur_seq_label is None:
return
sequence_labels.append(cur_seq_label)
sequence_strs.append("".join(buf))
cur_seq_label = None
buf = []
with gzip.open(fasta_file, "rt") as infile:
for line_idx, line in enumerate(infile):
if line.startswith(">"): # label line
_flush_current_seq()
line = line[1:].strip()
if len(line) > 0:
cur_seq_label = line
else:
cur_seq_label = f"seqnum{line_idx:09d}"
else: # sequence line
buf.append(line.strip())
_flush_current_seq()
assert len(set(sequence_labels)) == len(
sequence_labels
), "Found duplicate sequence labels"
return cls(sequence_labels, sequence_strs)
def extract_esm(fasta_file, model_location='esm2_t48_15B_UR50D',
truncation_seq_length=1022, toks_per_batch=4096,
device=None, out_file=None):
if out_file is not None and os.path.exists(out_file):
obj = torch.load(out_file)
data = obj['data']
proteins = obj['proteins']
return proteins, data
model, alphabet = pretrained.load_model_and_alphabet(model_location)
model.eval()
if device:
model = model.to(device)
if fasta_file.endswith('.gz'):
dataset = GzippedFastaBatchedDataset.from_file(fasta_file)
else:
dataset = FastaBatchedDataset.from_file(fasta_file)
batches = dataset.get_batch_indices(toks_per_batch, extra_toks_per_seq=1)
data_loader = torch.utils.data.DataLoader(
dataset, collate_fn=alphabet.get_batch_converter(truncation_seq_length), batch_sampler=batches
)
print(f"Read {fasta_file} with {len(dataset)} sequences")
# output_dir.mkdir(parents=True, exist_ok=True)
return_contacts = False
# repr_layers = [36,]
repr_layers = [48,]
proteins = []
data = []
with torch.no_grad():
for batch_idx, (labels, strs, toks) in tqdm(enumerate(data_loader), total=len(data_loader)):
print(
f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)"
)
if device:
toks = toks.to(device, non_blocking=True)
out = model(toks, repr_layers=repr_layers, return_contacts=return_contacts)
logits = out["logits"].to(device="cpu")
representations = {
layer: t.to(device="cpu") for layer, t in out["representations"].items()
}
if return_contacts:
contacts = out["contacts"].to(device="cpu")
for i, label in enumerate(labels):
result = {"label": label}
truncate_len = min(truncation_seq_length, len(strs[i]))
result["mean_representations"] = {
layer: t[i, 1 : truncate_len + 1].mean(0).clone()
for layer, t in representations.items()
}
proteins.append(label)
# data.append(result["mean_representations"][36])
data.append(result["mean_representations"][48])
# data = torch.stack(data).reshape(-1, 5120)
if out_file is not None:
torch.save({'data': data, 'proteins': proteins}, out_file)
return proteins, data