-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathiou_tracker.py
101 lines (78 loc) · 3.59 KB
/
iou_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# ---------------------------------------------------------
# IOU Tracker
# Copyright (c) 2017 TU Berlin, Communication Systems Group
# Licensed under The MIT License [see LICENSE for details]
# Written by Erik Bochinski
# ---------------------------------------------------------
from time import time
from util import load_mot, iou
def track_iou(detections, sigma_l, sigma_h, sigma_iou, t_min):
"""
Simple IOU based tracker.
See "High-Speed Tracking-by-Detection Without Using Image Information by E. Bochinski, V. Eiselein, T. Sikora" for
more information.
Args:
detections (list): list of detections per frame, usually generated by util.load_mot
sigma_l (float): low detection threshold.
sigma_h (float): high detection threshold.
sigma_iou (float): IOU threshold.
t_min (float): minimum track length in frames.
Returns:
list: list of tracks.
"""
tracks_active = []
tracks_finished = []
for frame_num, detections_frame in enumerate(detections, start=1):
# apply low threshold to detections
dets = [det for det in detections_frame if det['score'] >= sigma_l]
updated_tracks = []
for track in tracks_active:
if len(dets) > 0:
# get det with highest iou
best_match = max(dets, key=lambda x: iou(track['bboxes'][-1], x['bbox']))
if iou(track['bboxes'][-1], best_match['bbox']) >= sigma_iou:
track['bboxes'].append(best_match['bbox'])
track['max_score'] = max(track['max_score'], best_match['score'])
updated_tracks.append(track)
# remove from best matching detection from detections
del dets[dets.index(best_match)]
# if track was not updated
if len(updated_tracks) == 0 or track is not updated_tracks[-1]:
# finish track when the conditions are met
if track['max_score'] >= sigma_h and len(track['bboxes']) >= t_min:
tracks_finished.append(track)
# create new tracks
new_tracks = [{'bboxes': [det['bbox']], 'max_score': det['score'], 'start_frame': frame_num} for det in dets]
tracks_active = updated_tracks + new_tracks
# finish all remaining active tracks
tracks_finished += [track for track in tracks_active
if track['max_score'] >= sigma_h and len(track['bboxes']) >= t_min]
return tracks_finished
def track_iou_matlab_wrapper(detections, sigma_l, sigma_h, sigma_iou, t_min):
"""
Matlab wrapper of the iou tracker for the detrac evaluation toolkit.
Args:
detections (numpy.array): numpy array of detections, usually supplied by run_tracker.m
sigma_l (float): low detection threshold.
sigma_h (float): high detection threshold.
sigma_iou (float): IOU threshold.
t_min (float): minimum track length in frames.
Returns:
float: speed in frames per second.
list: list of tracks.
"""
detections = detections.reshape((7, -1)).transpose()
dets = load_mot(detections)
start = time()
tracks = track_iou(dets, sigma_l, sigma_h, sigma_iou, t_min)
end = time()
id_ = 1
out = []
for track in tracks:
for i, bbox in enumerate(track['bboxes']):
out += [float(bbox[0]), float(bbox[1]), float(bbox[2] - bbox[0]), float(bbox[3] - bbox[1]),
float(track['start_frame'] + i), float(id_)]
id_ += 1
num_frames = len(dets)
speed = num_frames / (end - start)
return speed, out