-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy path03-clustering.Rmd
1137 lines (884 loc) · 45 KB
/
03-clustering.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Clustering {#clustering}
<!-- Matt -->
<!-- http://www.madgroup.path.cam.ac.uk/microarraysummary.shtml -->
<!--
if variables are in same units - don't standardize, otherwise standardize
-->
## Introduction
Clustering attempts to find groups (clusters) of similar objects. The members of a cluster should be more similar to each other, than to objects in other clusters. Clustering algorithms aim to minimize intra-cluster variation and maximize inter-cluster variation.
Methods of clustering can be broadly divided into two types:
**Hierarchic** techniques produce dendrograms (trees) through a process of division or agglomeration.
**Partitioning** algorithms divide objects into non-overlapping subsets (examples include k-means and DBSCAN)
```{r clusterTypes, fig.cap='Example clusters. **A**, *blobs*; **B**, *aggregation* [@Gionis2007]; **C**, *noisy moons*; **D**, *different density*; **E**, *anisotropic distributions*; **F**, *no structure*.', out.width='80%', fig.asp=1.2, fig.align='center', echo=F}
library(ggplot2)
library(GGally)
blobs <- read.csv("data/example_clusters/blobs.csv", header=F)
aggregation <- read.table("data/example_clusters/aggregation.txt")
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
diff_density <- read.csv("data/example_clusters/different_density.csv", header=F)
aniso <- read.csv("data/example_clusters/aniso.csv", header=F)
no_structure <- read.csv("data/example_clusters/no_structure.csv", header=F)
plotList <- list(
qplot(x=V1, y=V2, data=blobs, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(blobs$V1)-min(blobs$V1))) + min(blobs$V1),
y=(0.9 * (max(blobs$V2)-min(blobs$V2))) + min(blobs$V2),
label ="A", size=8, col="blue"),
qplot(x=V1, y=V2, data=aggregation, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(aggregation$V1)-min(aggregation$V1))) + min(aggregation$V1),
y=(0.9 * (max(aggregation$V2)-min(aggregation$V2))) + min(aggregation$V2),
label="B", size=8, col="blue"),
qplot(x=V1, y=V2, data=noisy_moons, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(noisy_moons$V1)-min(noisy_moons$V1))) + min(noisy_moons$V1),
y=(0.9 * (max(noisy_moons$V2)-min(noisy_moons$V2))) + min(noisy_moons$V2),
label="C", size=8, col="blue"),
qplot(x=V1, y=V2, data=diff_density, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(diff_density$V1)-min(diff_density$V1))) + min(diff_density$V1),
y=(0.9 * (max(diff_density$V2)-min(diff_density$V2))) + min(diff_density$V2),
label="D", size=8, col="blue"),
qplot(x=V1, y=V2, data=aniso, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(aniso$V1)-min(aniso$V1))) + min(aniso$V1),
y=(0.9 * (max(aniso$V2)-min(aniso$V2))) + min(aniso$V2),
label="E", size=8, col="blue"),
qplot(x=V1, y=V2, data=no_structure, geom="point", size=I(0.2)) +
annotate("text", x=(0.01 * (max(no_structure$V1)-min(no_structure$V1))) + min(no_structure$V1),
y=(0.9 * (max(no_structure$V2)-min(no_structure$V2))) + min(no_structure$V2),
label="F", size=8, col="blue")
)
pm <- ggmatrix(
plotList, nrow=3, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F
) + theme_bw()
pm
```
## Distance metrics
Various distance metrics can be used with clustering algorithms. We will use Euclidean distance in the examples and exercises in this chapter.
\begin{equation}
distance\left(p,q\right)=\sqrt{\sum_{i=1}^{n} (p_i-q_i)^2}
(\#eq:euclidean)
\end{equation}
```{r euclideanDistanceDiagram, fig.cap='Euclidean distance.', out.width='75%', fig.asp=0.9, fig.align='center', echo=F}
par(mai=c(0.8,0.8,0.1,0.1))
x <- c(0.75,4.5)
y <- c(2.5,4.5)
plot(x, y, xlim=range(0,5), ylim=range(0,5), cex=5, col="steelblue", pch=16, cex.lab=1.5)
segments(x[1], y[1], x[2], y[2], lwd=4, col="grey30")
text(0.75,2, expression(paste('p(x'[1],'y'[1],')')), cex=1.7)
text(4.5,4, expression(paste('q(x'[2],'y'[2],')')), cex=1.7)
text(2.5,0.5, expression(paste('dist(p,q)'==sqrt((x[2]-x[1])^2 + (y[2]-y[1])^2))), cex=1.7)
```
## Hierarchic agglomerative
```{r hierarchicClusteringDemo, echo = F, fig.cap = 'Building a dendrogram using hierarchic agglomerative clustering.', fig.align = 'center', fig.show='hold', out.width = '55%'}
knitr::include_graphics(c("images/hclust_demo_0.png", "images/hclust_demo_1.png", "images/hclust_demo_2.png", "images/hclust_demo_3.png", "images/hclust_demo_4.png"))
```
### Linkage algorithms
```{r echo=F}
m <- matrix(c(rep(NA,5),
2,rep(NA,4),
6,5,rep(NA,3),
10,10,5,rep(NA,2),
9,8,3,4,NA),ncol=5,byrow=T,
dimnames=list(LETTERS[1:5], LETTERS[1:5])
)
mDisplay <- matrix(c(
2,rep("",3),
6,5,rep("",2),
10,10,5,rep("",1),
9,8,3,4),ncol=4,byrow=T,
dimnames=list(LETTERS[2:5], LETTERS[1:4])
)
d <- as.dist(m)
```
```{r distance-matrix, tidy=FALSE, echo=F}
knitr::kable(
mDisplay, caption = 'Example distance matrix',
booktabs = TRUE
)
```
Single linkage - nearest neighbours linkage
Complete linkage - furthest neighbours linkage
Average linkage - UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
```{r echo=F}
hclustSingle <- hclust(d, method="single")
hclustComplete <- hclust(d, method="complete")
hclustAverage <- hclust(d, method="average")
```
<!--
Explain anatomy of the dendrogram - branches, nodes and leaves.
-->
```{r distance-merge, tidy=FALSE, echo=F}
Single <- c(0,hclustSingle$height)
Complete <- c(0,hclustComplete$height)
Average <- c(0,hclustAverage$height)
Groups <- c("A,B,C,D,E", "(A,B),C,D,E", "(A,B),(C,E),D", "(A,B)(C,D,E)", "(A,B,C,D,E)")
distanceMerge <- data.frame(Groups,Single,Complete,Average)
knitr::kable(
distanceMerge, caption = 'Merge distances for objects in the example distance matrix using three different linkage methods.',
booktabs = TRUE
)
```
```{r linkageComparison, fig.cap='Dendrograms for the example distance matrix using three different linkage methods. ', out.width='100%', fig.asp=0.3, fig.align='center', fig.show='hold',echo=F}
library(ggdendro)
dend_single <- as.dendrogram(hclustSingle)
dend_complete <- as.dendrogram(hclustComplete)
dend_average <- as.dendrogram(hclustAverage)
dd_single <- dendro_data(dend_single, type="rectangle")
dd_complete <- dendro_data(dend_complete, type="rectangle")
dd_average <- dendro_data(dend_average, type="rectangle")
p_single <- ggplot(segment(dd_single)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
coord_flip() +
scale_y_reverse(expand=c(0.05,0)) +
ggtitle("Single linkage") +
geom_text(aes(x = x, y = y, label = label, angle = 0, hjust = -1), data= label(dd_single)) +
ylab("Distance") +
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
p_single
p_complete <- ggplot(segment(dd_complete)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
coord_flip() +
scale_y_reverse(expand=c(0.05,0)) +
ggtitle("Complete linkage") +
geom_text(aes(x = x, y = y, label = label, angle = 0, hjust = -1), data= label(dd_complete)) +
ylab("Distance") +
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
p_complete
p_average <- ggplot(segment(dd_average)) +
geom_segment(aes(x=x, y=y, xend=xend, yend=yend)) +
coord_flip() +
scale_y_reverse(expand=c(0.05,0)) +
ggtitle("Average linkage") +
geom_text(aes(x = x, y = y, label = label, angle = 0, hjust = -1), data= label(dd_average)) +
ylab("Distance") +
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
p_average
```
## K-means
### Algorithm
Pseudocode for the K-means algorithm
```
randomly choose k objects as initial centroids
while true:
1. create k clusters by assigning each object to closest centroid
2. compute k new centroids by averaging the objects in each cluster
3. if none of the centroids differ from the previous iteration:
return the current set of clusters
```
```{r kmeansIterations, fig.cap='Iterations of the k-means algorithm', out.width='90%', fig.asp=1.2, fig.align='center',echo=F}
library(RColorBrewer)
point_shapes <- c(17,19)
point_colours <- brewer.pal(3,"Dark2")
point_size = 4
center_point_size = 8
load("data/example_clusters/kmeans_iteration_demo.rda")
# current_centers=initial_centroids
plotList <- list(
ggplot(kmeans_demo_df, aes(V1,V2)) +
geom_point(col="grey30", shape=15, size=point_size) +
geom_point(data=initial_centroids, aes(V1,V2), shape=3,
col="black", size=center_point_size) +theme_bw())
plot_kmeans_result <- function(iterations,dat,centers) {
res <- suppressWarnings(kmeans(dat,centers=centers, iter.max=iterations, algorithm="Lloyd"))
current_centers <- as.data.frame(res$centers)
ggplot(kmeans_demo_df, aes(V1,V2)) +
geom_point(col=point_colours[res$cluster], shape=point_shapes[res$cluster], size=point_size) +
geom_point(data=current_centers, aes(V1,V2), shape=3, col="black", size=center_point_size) + theme_bw() +
annotate("text", x=-7, y=7, label =paste("Iter.", iterations, sep=" "), size=8, col="black")
}
plotList <- c(plotList, lapply(c(1,3,2,4), plot_kmeans_result, dat=kmeans_demo_df, centers=initial_centroids))
pm <- ggmatrix(
plotList, nrow=3, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F
) + theme_bw()
pm
```
The default setting of the **kmeans** function is to perform a maximum of 10 iterations and if the algorithm fails to converge a warning is issued. The maximum number of iterations is set with the argument **iter.max**.
### Choosing initial cluster centres
```{r kmeansCentreChoice, fig.cap='Initial centres determine clusters. The starting centres are shown as crosses. **A**, real clusters found; **B**, convergence to a local minimum.', out.width='100%', fig.asp=0.5, fig.align='center',echo=T}
library(RColorBrewer)
point_shapes <- c(15,17,19)
point_colours <- brewer.pal(3,"Dark2")
point_size = 1.5
center_point_size = 8
blobs <- as.data.frame(read.csv("data/example_clusters/blobs.csv", header=F))
good_centres <- as.data.frame(matrix(c(2,8,7,3,12,7), ncol=2, byrow=T))
bad_centres <- as.data.frame(matrix(c(13,13,8,12,2,2), ncol=2, byrow=T))
good_result <- kmeans(blobs[,1:2], centers=good_centres)
bad_result <- kmeans(blobs[,1:2], centers=bad_centres)
plotList <- list(
ggplot(blobs, aes(V1,V2)) +
geom_point(col=point_colours[good_result$cluster], shape=point_shapes[good_result$cluster],
size=point_size) +
geom_point(data=good_centres, aes(V1,V2), shape=3, col="black", size=center_point_size) +
theme_bw(),
ggplot(blobs, aes(V1,V2)) +
geom_point(col=point_colours[bad_result$cluster], shape=point_shapes[bad_result$cluster],
size=point_size) +
geom_point(data=bad_centres, aes(V1,V2), shape=3, col="black", size=center_point_size) +
theme_bw()
)
pm <- ggmatrix(
plotList, nrow=1, ncol=2, showXAxisPlotLabels = T, showYAxisPlotLabels = T,
xAxisLabels=c("A", "B")
) + theme_bw()
pm
```
Convergence to a local minimum can be avoided by starting the algorithm multiple times, with different random centres. The **nstart** argument to the **k-means** function can be used to specify the number of random sets and optimal solution will be selected automatically.
### Choosing k {#choosingK}
```{r kmeansRangeK, fig.cap='K-means clustering of the blobs data set using a range of values of k from 1-9. Cluster centres indicated with a cross.', out.width='100%', fig.asp=1, fig.align='center',echo=T}
point_colours <- brewer.pal(9,"Set1")
k <- 1:9
res <- lapply(k, function(i){kmeans(blobs[,1:2], i, nstart=50)})
plotList <- lapply(k, function(i){
ggplot(blobs, aes(V1, V2)) +
geom_point(col=point_colours[res[[i]]$cluster], size=1) +
geom_point(data=as.data.frame(res[[i]]$centers), aes(V1,V2), shape=3, col="black", size=5) +
annotate("text", x=2, y=13, label=paste("k=", i, sep=""), size=8, col="black") +
theme_bw()
}
)
pm <- ggmatrix(
plotList, nrow=3, ncol=3, showXAxisPlotLabels = T, showYAxisPlotLabels = T
) + theme_bw()
pm
```
```{r choosingKplot, fig.cap='Variance within the clusters. Total within-cluster sum of squares plotted against k.', out.width='50%', fig.asp=1, fig.align='center',echo=T}
tot_withinss <- sapply(k, function(i){res[[i]]$tot.withinss})
qplot(k, tot_withinss, geom=c("point", "line"),
ylab="Total within-cluster sum of squares") + theme_bw()
```
*N.B.* we have set ```nstart=50``` to run the algorithm 50 times, starting from different, random sets of centroids.
## DBSCAN
Density-based spatial clustering of applications with noise
### Algorithm
Abstract DBSCAN algorithm in pseudocode [@Schubert2017]
```
1 Compute neighbours of each point and identify core points // Identify core points
2 Join neighbouring core points into clusters // Assign core points
3 foreach non-core point do
Add to a neighbouring core point if possible // Assign border points
Otherwise, add to noise // Assign noise points
```
```{r dbscanIllustration, echo=FALSE, out.width='75%', fig.align='center', fig.cap="Illustration of the DBSCAN algorithm. By Chire (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons."}
knitr::include_graphics("images/DBSCAN_Illustration.svg")
```
The method requires two parameters; MinPts that is the minimum number of samples in any cluster; Eps that is the maximum distance of the sample to at least one other sample within the same cluster.
This algorithm works on a parametric approach. The two parameters involved in this algorithm are:
* e (eps) is the radius of our neighborhoods around a data point p.
* minPts is the minimum number of data points we want in a neighborhood to define a cluster.
### Implementation in R
DBSCAN is implemented in two R packages: [dbscan](https://cran.r-project.org/package=dbscan) and [fpc](https://cran.r-project.org/package=fpc). We will use the package [dbscan](https://cran.r-project.org/package=dbscan), because it is significantly faster and can handle larger data sets than [fpc](https://cran.r-project.org/package=fpc). The function has the same name in both packages and so if for any reason both packages have been loaded into our current workspace, there is a danger of calling the wrong implementation. To avoid this we can specify the package name when calling the function, e.g.:
```
dbscan::dbscan
```
We load the dbscan package in the usual way:
```{r echo=T}
library(dbscan)
```
### Choosing parameters
The algorithm only needs parameteres **eps** and **minPts**.
Read in data and use **kNNdist** function from [dbscan](https://cran.r-project.org/package=dbscan) package to plot the distances of the 10-nearest neighbours for each observation (figure \@ref(fig:blobsKNNdist)).
```{r blobsKNNdist, fig.cap='10-nearest neighbour distances for the blobs data set', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
blobs <- read.csv("data/example_clusters/blobs.csv", header=F)
kNNdistplot(blobs[,1:2], k=10)
abline(h=0.6)
```
<!-- dist2knn <- kNNdist(blobs, 10) -->
```{r echo=T}
res <- dbscan::dbscan(blobs[,1:2], eps=0.6, minPts = 10)
table(res$cluster)
```
```{r blobsDBSCANscatter, fig.cap='DBSCAN clustering (eps=0.6, minPts=10) of the blobs data set. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
ggplot(blobs, aes(V1,V2)) +
geom_point(col=brewer.pal(8,"Dark2")[c(8,1:7)][res$cluster+1],
shape=c(4,15,17,19)[res$cluster+1],
size=1.5) +
theme_bw()
```
## Example: clustering synthetic data sets
### Hierarchic agglomerative
#### Step-by-step instructions
1. Load required packages.
```{r, echo=T}
library(RColorBrewer)
library(dendextend)
library(ggplot2)
library(GGally)
```
2. Retrieve a palette of eight colours.
```{r, echo=T}
cluster_colours <- brewer.pal(8,"Dark2")
```
3. Read in data for **blobs** example.
```{r, echo=T}
blobs <- read.csv("data/example_clusters/blobs.csv", header=F)
```
4. Create distance matrix using Euclidean distance metric.
```{r, echo=T}
d <- dist(blobs[,1:2])
```
5. Perform hierarchical clustering using the **average** agglomeration method and convert the result to an object of class **dendrogram**. A **dendrogram** object can be edited using the advanced features of the **dendextend** package.
```{r, echo=T}
dend <- as.dendrogram(hclust(d, method="average"))
```
6. Cut the tree into three clusters
```{r, echo=T}
clusters <- cutree(dend,3,order_clusters_as_data=F)
```
7. The vector **clusters** contains the cluster membership (in this case *1*, *2* or *3*) of each observation (data point) in the order they appear on the dendrogram. We can use this vector to colour the branches of the dendrogram by cluster.
```{r, echo=T}
dend <- color_branches(dend, clusters=clusters, col=cluster_colours[1:3])
```
8. We can use the **labels** function to annotate the leaves of the dendrogram. However, it is not possible to create legible labels for the 1,500 leaves in our example dendrogram, so we will set the label for each leaf to an empty string.
```{r, echo=T}
labels(dend) <- rep("", length(blobs[,1]))
```
9. If we want to plot the dendrogram using **ggplot**, we must convert it to an object of class **ggdend**.
```{r, echo=T}
ggd <- as.ggdend(dend)
```
10. The **nodes** attribute of **ggd** is a data.frame of parameters related to the plotting of dendogram nodes. The **nodes** data.frame contains some NAs which will generate warning messages when **ggd** is processed by **ggplot**. Since we are not interested in annotating dendrogram nodes, the easiest option here is to delete all of the rows of **nodes**.
```{r, echo=T}
ggd$nodes <- ggd$nodes[!(1:length(ggd$nodes[,1])),]
```
11. We can use the cluster membership of each observation contained in the vector **clusters** to assign colours to the data points of a scatterplot. However, first we need to reorder the vector so that the cluster memberships are in the same order that the observations appear in the data.frame of observations. Fortunately the names of the elements of the vector are the indices of the observations in the data.frame and so reordering can be accomplished in one line.
```{r, echo=T}
clusters <- clusters[order(as.numeric(names(clusters)))]
```
12. We are now ready to plot a dendrogram and scatterplot. We will use the **ggmatrix** function from the **GGally** package to place the plots side-by-side.
```{r hclustBlobs, fig.cap='Hierarchical clustering of the blobs data set.', out.width='80%', fig.asp=0.5, fig.align='center', echo=T}
plotList <- list(ggplot(ggd),
ggplot(blobs, aes(V1,V2)) +
geom_point(col=cluster_colours[clusters], size=0.2)
)
pm <- ggmatrix(
plotList, nrow=1, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F,
xAxisLabels=c("dendrogram", "scatter plot")
) + theme_bw()
pm
```
#### Clustering of other synthetic data sets
```{r hclustToyData, fig.cap='Hierarchical clustering of synthetic data-sets. ', out.width='75%', fig.asp=2.2, fig.align='center',echo=T}
aggregation <- read.table("data/example_clusters/aggregation.txt")
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
diff_density <- read.csv("data/example_clusters/different_density.csv", header=F)
aniso <- read.csv("data/example_clusters/aniso.csv", header=F)
no_structure <- read.csv("data/example_clusters/no_structure.csv", header=F)
hclust_plots <- function(data_set, n){
d <- dist(data_set[,1:2])
dend <- as.dendrogram(hclust(d, method="average"))
clusters <- cutree(dend,n,order_clusters_as_data=F)
dend <- color_branches(dend, clusters=clusters, col=cluster_colours[1:n])
clusters <- clusters[order(as.numeric(names(clusters)))]
labels(dend) <- rep("", length(data_set[,1]))
ggd <- as.ggdend(dend)
ggd$nodes <- ggd$nodes[!(1:length(ggd$nodes[,1])),]
plotPair <- list(ggplot(ggd),
ggplot(data_set, aes(V1,V2)) +
geom_point(col=cluster_colours[clusters], size=0.2))
return(plotPair)
}
plotList <- c(
hclust_plots(aggregation, 7),
hclust_plots(noisy_moons, 2),
hclust_plots(diff_density, 2),
hclust_plots(aniso, 3),
hclust_plots(no_structure, 3)
)
pm <- ggmatrix(
plotList, nrow=5, ncol=2, showXAxisPlotLabels = F, showYAxisPlotLabels = F,
xAxisLabels=c("dendrogram", "scatter plot"),
yAxisLabels=c("aggregation", "noisy moons", "different density", "anisotropic", "no structure")
) + theme_bw()
pm
```
### K-means
Earlier we saw how k-means performed on the blobs data set. Let's see how k-means performs on the other toy data sets. First we will define some variables and functions we will use in the analysis of all data sets.
```{r echo=T}
k=1:9
point_shapes <- c(15,17,19,5,6,0,1)
point_colours <- brewer.pal(7,"Dark2")
point_size = 1.5
center_point_size = 8
plot_tot_withinss <- function(kmeans_output){
tot_withinss <- sapply(k, function(i){kmeans_output[[i]]$tot.withinss})
qplot(k, tot_withinss, geom=c("point", "line"),
ylab="Total within-cluster sum of squares") + theme_bw()
}
plot_clusters <- function(data_set, kmeans_output, num_clusters){
ggplot(data_set, aes(V1,V2)) +
geom_point(col=point_colours[kmeans_output[[num_clusters]]$cluster],
shape=point_shapes[kmeans_output[[num_clusters]]$cluster],
size=point_size) +
geom_point(data=as.data.frame(kmeans_output[[num_clusters]]$centers), aes(V1,V2),
shape=3,col="black",size=center_point_size) +
theme_bw()
}
```
#### Aggregation
```{r kmeansAggregationElbow, fig.cap='K-means clustering of the aggregation data set: variance within clusters.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
aggregation <- as.data.frame(read.table("data/example_clusters/aggregation.txt"))
res <- lapply(k, function(i){kmeans(aggregation[,1:2], i, nstart=50)})
plot_tot_withinss(res)
```
```{r kmeansAggregationScatter, fig.cap='K-means clustering of the aggregation data set: scatterplots of clusters for k=3 and k=7. Cluster centres indicated with a cross.', out.width='100%', fig.asp=0.5, fig.align='center', echo=T}
plotList <- list(
plot_clusters(aggregation, res, 3),
plot_clusters(aggregation, res, 7)
)
pm <- ggmatrix(
plotList, nrow=1, ncol=2, showXAxisPlotLabels = T, showYAxisPlotLabels = T,
xAxisLabels=c("k=3", "k=7")
) + theme_bw()
pm
```
#### Noisy moons
```{r kmeansNoisyMoonsElbow, fig.cap='K-means clustering of the noisy moons data set: variance within clusters.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
res <- lapply(k, function(i){kmeans(noisy_moons[,1:2], i, nstart=50)})
plot_tot_withinss(res)
```
```{r kmeansNoisyMoonsScatter, fig.cap='K-means clustering of the noisy moons data set: scatterplot of clusters for k=2. Cluster centres indicated with a cross.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
plot_clusters(noisy_moons, res, 2)
```
#### Different density
```{r echo=T}
diff_density <- as.data.frame(read.csv("data/example_clusters/different_density.csv", header=F))
res <- lapply(k, function(i){kmeans(diff_density[,1:2], i, nstart=50)})
```
Failure to converge, so increase number of iterations.
```{r kmeansDiffDensityElbow, fig.cap='K-means clustering of the different density distributions data set: variance within clusters.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
res <- lapply(k, function(i){kmeans(diff_density[,1:2], i, iter.max=20, nstart=50)})
plot_tot_withinss(res)
```
```{r kmeansDiffDensityScatter, fig.cap='K-means clustering of the different density distributions data set: scatterplots of clusters for k=2 and k=3. Cluster centres indicated with a cross.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
plot_clusters(diff_density, res, 2)
```
#### Anisotropic distributions
```{r kmeansAnisoElbow, fig.cap='K-means clustering of the anisotropic distributions data set: variance within clusters.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
aniso <- as.data.frame(read.csv("data/example_clusters/aniso.csv", header=F))
res <- lapply(k, function(i){kmeans(aniso[,1:2], i, nstart=50)})
plot_tot_withinss(res)
```
```{r kmeansAnisoScatter, fig.cap='K-means clustering of the anisotropic distributions data set: scatterplots of clusters for k=2 and k=3. Cluster centres indicated with a cross.', out.width='100%', fig.asp=0.5, fig.align='center', echo=T}
plotList <- list(
plot_clusters(aniso, res, 2),
plot_clusters(aniso, res, 3)
)
pm <- ggmatrix(
plotList, nrow=1, ncol=2, showXAxisPlotLabels = T,
showYAxisPlotLabels = T, xAxisLabels=c("k=2", "k=3")
) + theme_bw()
pm
```
#### No structure
```{r noStructureElbow, fig.cap='K-means clustering of the data set with no structure: variance within clusters.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
no_structure <- as.data.frame(read.csv("data/example_clusters/no_structure.csv", header=F))
res <- lapply(k, function(i){kmeans(no_structure[,1:2], i, nstart=50)})
plot_tot_withinss(res)
```
```{r noStructureScatter, fig.cap='K-means clustering of the data set with no structure: scatterplot of clusters for k=4. Cluster centres indicated with a cross.', out.width='50%', fig.asp=1, fig.align='center', echo=T}
plot_clusters(no_structure, res, 4)
```
### DBSCAN
Prepare by defining some variables and a plotting function.
```{r echo=T}
point_shapes <- c(4,15,17,19,5,6,0,1)
point_colours <- brewer.pal(8,"Dark2")[c(8,1:7)]
point_size = 1.5
center_point_size = 8
plot_dbscan_clusters <- function(data_set, dbscan_output){
ggplot(data_set, aes(V1,V2)) +
geom_point(col=point_colours[dbscan_output$cluster+1],
shape=point_shapes[dbscan_output$cluster+1],
size=point_size) +
theme_bw()
}
```
#### Aggregation
```{r aggregationKNNdist, fig.cap='10-nearest neighbour distances for the aggregation data set', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
aggregation <- read.table("data/example_clusters/aggregation.txt")
kNNdistplot(aggregation[,1:2], k=10)
abline(h=1.8)
```
```{r echo=T}
res <- dbscan::dbscan(aggregation[,1:2], eps=1.8, minPts = 10)
table(res$cluster)
```
```{r aggregationDBSCANscatter, fig.cap='DBSCAN clustering (eps=1.8, minPts=10) of the aggregation data set. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
plot_dbscan_clusters(aggregation, res)
```
#### Noisy moons
```{r noisyMoonsKNNdist, fig.cap='10-nearest neighbour distances for the noisy moons data set', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
kNNdistplot(noisy_moons[,1:2], k=10)
abline(h=0.075)
```
```{r echo=T}
res <- dbscan::dbscan(noisy_moons[,1:2], eps=0.075, minPts = 10)
table(res$cluster)
```
```{r noisyMoonsDBSCANscatter, fig.cap='DBSCAN clustering (eps=0.075, minPts=10) of the noisy moons data set. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
plot_dbscan_clusters(noisy_moons, res)
```
#### Different density
```{r diffDensityKNNdist, fig.cap='10-nearest neighbour distances for the different density distributions data set', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
diff_density <- read.csv("data/example_clusters/different_density.csv", header=F)
kNNdistplot(diff_density[,1:2], k=10)
abline(h=0.9)
abline(h=0.6, lty=2)
```
```{r echo=T}
res <- dbscan::dbscan(diff_density[,1:2], eps=0.9, minPts = 10)
table(res$cluster)
```
```{r diffDensityDBSCANscatter1, fig.cap='DBSCAN clustering of the different density distribution data set with eps=0.9 and minPts=10. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
plot_dbscan_clusters(diff_density, res)
```
```{r echo=T}
res <- dbscan::dbscan(diff_density[,1:2], eps=0.6, minPts = 10)
table(res$cluster)
```
```{r diffDensityDBSCANscatter2, fig.cap='DBSCAN clustering of the different density distribution data set with eps=0.6 and minPts=10. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
plot_dbscan_clusters(diff_density, res)
```
#### Anisotropic distributions
```{r anisoKNNdist, fig.cap='10-nearest neighbour distances for the anisotropic distributions data set', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
aniso <- read.csv("data/example_clusters/aniso.csv", header=F)
kNNdistplot(aniso[,1:2], k=10)
abline(h=0.35)
```
```{r echo=T}
res <- dbscan::dbscan(aniso[,1:2], eps=0.35, minPts = 10)
table(res$cluster)
```
```{r anisoDBSCANscatter, fig.cap='DBSCAN clustering (eps=0.3, minPts=10) of the anisotropic distributions data set. Outlier observations are shown as grey crosses.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
plot_dbscan_clusters(aniso, res)
```
#### No structure
```{r noStructureKNNdist, fig.cap='10-nearest neighbour distances for the data set with no structure.', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
no_structure <- read.csv("data/example_clusters/no_structure.csv", header=F)
kNNdistplot(no_structure[,1:2], k=10)
abline(h=0.057)
```
```{r echo=T}
res <- dbscan::dbscan(no_structure[,1:2], eps=0.57, minPts = 10)
table(res$cluster)
```
<!--No need for scatter plot-->
## Evaluating cluster quality
<!--
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
-->
### Silhouette method {#silhouetteMethod}
**Silhouette**
\begin{equation}
s(i) = \frac{b(i) - a(i)}{max\left(a(i),b(i)\right)}
(\#eq:silhouette)
\end{equation}
Where
* _a(i)_ - average dissimmilarity of _i_ with all other data within the cluster. _a(i)_ can be interpreted as how well _i_ is assigned to its cluster (the smaller the value, the better the assignment).
* _b(i)_ - the lowest average dissimilarity of _i_ to any other cluster, of which _i_ is not a member.
Observations with a large _s(i)_ (close to 1) are very well clustered. Observations lying between clusters will have a small _s(i)_ (close to 0). If an observation has a negative _s(i)_, it has probably been placed in the wrong cluster.
### Example - k-means clustering of blobs data set
Load library required for calculating silhouette coefficients and plotting silhouettes.
```{r echo=T}
library(cluster)
```
We are going to take another look at k-means clustering of the blobs data-set (figure \@ref(fig:kmeansRangeK)). Specifically we are going to see if silhouette analysis supports our original choice of k=3 as the optimum number of clusters (figure \@ref(fig:choosingKplot)).
Silhouette analysis requires a minimum of two clusters, so we'll try values of k from 2 to 9.
```{r echo=T}
k <- 2:9
```
Create a palette of colours for plotting.
```{r echo=T}
kColours <- brewer.pal(9,"Set1")
```
Perform k-means clustering for each value of k from 2 to 9.
```{r echo=T}
res <- lapply(k, function(i){kmeans(blobs[,1:2], i, nstart=50)})
```
Calculate the Euclidean distance matrix
```{r echo=T}
d <- dist(blobs[,1:2])
```
Silhouette plot for k=2
```{r silhouetteK2, fig.cap='Silhouette plot for k-means clustering of the blobs data set with k=2.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
s2 <- silhouette(res[[2-1]]$cluster, d)
plot(s2, border=NA, col=kColours[sort(res[[2-1]]$cluster)], main="")
```
Silhouette plot for k=9
```{r silhouetteK9, fig.cap='Silhouette plot for k-means clustering of the blobs data set with k=9.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
s9 <- silhouette(res[[9-1]]$cluster, d)
plot(s9, border=NA, col=kColours[sort(res[[9-1]]$cluster)], main="")
```
Let's take a look at the silhouette plot for k=3.
```{r silhouetteK3, fig.cap='Silhouette plot for k-means clustering of the blobs data set with k=3.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
s3 <- silhouette(res[[3-1]]$cluster, d)
plot(s3, border=NA, col=kColours[sort(res[[3-1]]$cluster)], main="")
```
So far the silhouette plots have shown that k=3 appears to be the optimum number of clusters, but we should investigate the silhouette coefficients at other values of k. Rather than produce a silhouette plot for each value of k, we can get a useful summary by making a barplot of average silhouette coefficients.
First we will calculate the silhouette coefficient for every observation (we need to index our list of **kmeans** outputs by ```i-1```, because we are counting from k=2 ).
```{r echo=T}
s <- lapply(k, function(i){silhouette(res[[i-1]]$cluster, d)})
```
We can then calculate the mean silhouette coefficient for each value of k from 2 to 9.
```{r echo=T}
avgS <- sapply(s, function(x){mean(x[,3])})
```
Now we have the data we need to produce a barplot.
```{r silhouetteAllK, fig.cap='Barplot of the average silhouette coefficients resulting from k-means clustering of the blobs data-set using values of k from 1-9.', out.width='75%', fig.asp=0.7, fig.align='center', echo=T}
dat <- data.frame(k, avgS)
ggplot(data=dat, aes(x=k, y=avgS)) +
geom_bar(stat="identity", fill="steelblue") +
geom_text(aes(label=round(avgS,2)), vjust=1.6, color="white", size=3.5)+
labs(y="Average silhouette coefficient") +
scale_x_continuous(breaks=2:9) +
theme_bw()
```
The bar plot (figure \@ref(fig:silhouetteAllK)) confirms that the optimum number of clusters is three.
### Example - DBSCAN clustering of noisy moons
<!--
Read data
```{r echo=T}
noisy_moons <- read.csv("data/example_clusters/noisy_moons.csv", header=F)
```
-->
The clusters that DBSCAN found in the noisy moons data set are shown in figure \@ref(fig:noisyMoonsDBSCANscatter).
Let's repeat clustering, because the original result is no longer in memory.
```{r echo=T}
res <- dbscan::dbscan(noisy_moons[,1:2], eps=0.075, minPts = 10)
```
Identify noise points as we do not want to include these in the silhouette analysis
```{r echo=T}
# identify and remove noise points
noise <- res$cluster==0
```
Remove noise points from cluster results
```{r echo=T}
clusters <- res$cluster[!noise]
```
Generate distance matrix from ```noisy_moons``` data.frame, exluding noise points.
```{r echo=T}
d <- dist(noisy_moons[!noise,1:2])
```
Silhouette analysis
```{r silhouetteNoisyMoonsDBSCAN, fig.cap='Silhouette plot for DBSCAN clustering of the noisy moons data set.', out.width='60%', fig.asp=1, fig.align='center', echo=T}
clusterColours <- brewer.pal(9,"Set1")
sil <- silhouette(clusters, d)
plot(sil, border=NA, col=clusterColours[sort(clusters)], main="")
```
The silhouette analysis suggests that DBSCAN has found clusters of poor quality in the noisy moons data set. However, we saw by eye that it it did a good job of deliminiting the two clusters. The result demonstrates that the silhouette method is less useful when dealing with clusters that are defined by density, rather than inertia.
## Example: gene expression profiling of human tissues
### Hierarchic agglomerative
#### Basics
Load required libraries
```{r echo=T}
library(RColorBrewer)
library(dendextend)
```
Load data
```{r echo=T}
load("data/tissues_gene_expression/tissuesGeneExpression.rda")
```
Inspect data
```{r echo=T}
table(tissue)
dim(e)
```
Compute distance between each sample
```{r echo=T}
d <- dist(t(e))
```
perform hierarchical clustering
```{r tissueDendrogram, fig.cap='Clustering of tissue samples based on gene expression profiles. ', out.width='100%', fig.asp=0.7, fig.align='center', echo=T}
hc <- hclust(d, method="average")
plot(hc, labels=tissue, cex=0.5, hang=-1, xlab="", sub="")
```
#### Colour labels
The dendextend library can be used to plot dendrogram with colour labels
```{r tissueDendrogramColour, fig.cap='Clustering of tissue samples based on gene expression profiles with labels coloured by tissue type. ', out.width='100%', fig.asp=3, fig.align='center', echo=T}
tissue_type <- unique(tissue)
dend <- as.dendrogram(hc)
dend_colours <- brewer.pal(length(unique(tissue)),"Dark2")
names(dend_colours) <- tissue_type
labels(dend) <- tissue[order.dendrogram(dend)]
labels_colors(dend) <- dend_colours[tissue][order.dendrogram(dend)]
labels_cex(dend) = 0.5
plot(dend, horiz=T)
```
#### Defining clusters by cutting tree
Define clusters by cutting tree at a specific height
```{r tissueDendrogramCutHeight, fig.cap='Clusters found by cutting tree at a height of 125', out.width='100%', fig.asp=3, fig.align='center', echo=T}
plot(dend, horiz=T)
abline(v=125, lwd=2, lty=2, col="blue")
hclusters <- cutree(dend, h=125)
table(tissue, cluster=hclusters)
```
Select a specific number of clusters.
```{r tissueDendrogramEightClusters, fig.cap='Selection of eight clusters from the dendogram', out.width='100%', fig.asp=3, fig.align='center', echo=T}
plot(dend, horiz=T)
abline(v = heights_per_k.dendrogram(dend)["8"], lwd = 2, lty = 2, col = "blue")
hclusters <- cutree(dend, k=8)
table(tissue, cluster=hclusters)
```
#### Heatmap
Base R provides a **heatmap** function, but we will use the more advanced **heatmap.2** from the **gplots** package.
```{r echo=T}
library(gplots)
```
Define a colour palette (also known as a lookup table).
```{r echo=T}
heatmap_colours <- colorRampPalette(brewer.pal(9, "PuBuGn"))(100)
```
Calculate the variance of each gene.
```{r echo=T}
geneVariance <- apply(e,1,var)
```
Find the row numbers of the 40 genes with the highest variance.
```{r echo=T}
idxTop40 <- order(-geneVariance)[1:40]
```
Define colours for tissues.
```{r echo=T}
tissueColours <- palette(brewer.pal(8, "Dark2"))[as.numeric(as.factor(tissue))]
```
Plot heatmap.
```{r heatmapTissueExpression, fig.cap='Heatmap of the expression of the 40 genes with the highest variance.', out.width='100%', fig.asp=0.8, fig.align='center', echo=T}
heatmap.2(e[idxTop40,], labCol=tissue, trace="none",
ColSideColors=tissueColours, col=heatmap_colours)
```
### K-means
Load data if not already in workspace.
```{r echo=T}
load("data/tissues_gene_expression/tissuesGeneExpression.rda")
```
As we saw earlier, the data set contains expression levels for over 22,000 transcripts in seven tissues.
```{r echo=T}
table(tissue)
dim(e)
```
First we will examine the total intra-cluster variance with different values of *k*. Our data-set is fairly large, so clustering it for several values or *k* and with multiple random starting centres is computationally quite intensive. Fortunately the task readily lends itself to parallelization; we can assign the analysis of each 'k' to a different processing core. As we have seen in the previous chapters on supervised learning, [caret](http://cran.r-project.org/web/packages/caret/index.html) has parallel processing built in and we simply have to load a package for multicore processing, such as [doMC](http://cran.r-project.org/web/packages/doMC/index.html), and then register the number of cores we would like to use. Running **kmeans** in parallel is slightly more involved, but still very easy. We will start by loading [doMC](http://cran.r-project.org/web/packages/doMC/index.html) and registering all available cores:
```{r echo=T}
library(doMC)
registerDoMC(detectCores())
```
To find out how many cores we have registered we can use:
```{r echo=T}
getDoParWorkers()
```
Instead of using the **lapply** function to vectorize our code, we will instead use the parallel equivalent, **foreach**. Like **lapply**, **foreach** returns a list by default. For this example we have set a seed, rather than generate a random number, for the sake of reproducibility. Ordinarily we would omit ```set.seed(42)``` and ```.options.multicore=list(set.seed=FALSE)```.
```{r tissueExpressionElbow, fig.cap='K-means clustering of human tissue gene expression: variance within clusters.', out.width='100%', fig.asp=0.5, fig.align='center', echo=T}
k<-1:15
set.seed(42)
res_k_15 <- foreach(
i=k,
.options.multicore=list(set.seed=FALSE)) %dopar% kmeans(t(e), i, nstart=10)
plot_tot_withinss(res_k_15)