-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yml
157 lines (149 loc) · 2.88 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# ----------------
# ---- Common ----
# ----------------
SOURCE:
'Unity'
TARGET:
'Real'
NUM_WORKERS:
16
NUM_CLASSES:
2 # it was 19
EXP_NAME:
''
EXP_ROOT:
project_root / 'experiments'
EXP_ROOT_SNAPSHOT:
'' # osp.join(cfg.EXP_ROOT, 'snapshots')
EXP_ROOT_LOGS:
'' # osp.join(cfg.EXP_ROOT, 'logs')
GPU_ID:
0
# ----------------
# ----- Train-----
# ----------------
TRAIN:
INPUT_SIZE_SOURCE: !!python/tuple [256,256]
INPUT_SIZE_TARGET: !!python/tuple [256,256]
MODEL:
'DeepLabv2'
MULTI_LEVEL:
True
RESTORE_FROM:
''
LEARNING_RATE:
2.5e-4
MOMENTUM:
0.9
WEIGHT_DECAY:
0.0005
POWER:
0.9
LAMBDA_SEG_MAIN:
1.0
LAMBDA_SEG_AUX:
0.1
DA_METHOD:
'AdvEnt'
# Adversarial training params
LEARNING_RATE_D:
0.0001
LAMBDA_ADV_MAIN:
0.001
LAMBDA_ADV_AUX:
0.0002
# MinEnt params
LAMBDA_ENT_MAIN:
0.001
LAMBDA_ENT_AUX:
0.0002
# Other params
MAX_ITERS:
250000
EARLY_STOP:
30000
SAVE_PRED_EVERY:
2000
SNAPSHOT_DIR:
''
RANDOM_SEED:
1234
tests_per_epoch:
4
SAVE_IMAGE_PRED:
100
# ----------------
# ----- Test -----
# ----------------
TEST:
MODE:
'best' # {'single', 'best'}
Model:
TEST.MODEL:
('DeepLabv2',)
MODEL_WEIGHT:
(1.0,)
MULTI_LEVEL:
(True,)
RESTORE_FROM:
''
SNAPSHOT_DIR:
'' # used in 'best' mode
SNAPSHOT_STEP:
2000 # used in 'best' mode
SNAPSHOT_MAXITER:
120000 # used in 'best' mode
# Test sets
SET_TARGET:
'val'
INPUT_SIZE_TARGET: !!python/tuple [256,256]
OUTPUT_SIZE_TARGET: !!python/tuple [256,256]
WAIT_MODEL:
True
overlay:
True
store_images:
False
fixed_test_size:
True
test_iter:
30000
# ----------------
# --- Comet_ML ---
# ----------------
workspace:
'tianyu-z'
project_name:
'advent-ccai'
# ----------------
# ----- Data -----
# ----------------
data:
use_real: true
files: # if one is not none it will override the dirs location
base: "/network/tmp1/ccai/data/mask_generation/11K" # ! Check output_dir
train: train.json
val: test.json
real_files:
base: "/network/tmp1/ccai/data/mask_generation/real"
train: train.json
val: test.json
img_size: 256
loaders:
batch_size: 40 # 40, max=93
shuffle: True
num_workers: 4
transforms:
- name: hflip
ignore: true
p: 0.5
- name: resize
ignore: false
new_size: 256 #! Make sure this matches opts.data.img_size
- name: crop
ignore: false
height: 224
width: 224
- name: resize # ? this or change generator's output? Or resize larger then crop to 256?
ignore: false
new_size: 256 #! Make sure this matches opts.data.img_size