-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_CCAI.py
139 lines (117 loc) · 4.52 KB
/
test_CCAI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from comet_ml import Experiment
import argparse
import os
import os.path as osp
import pprint
import random
import warnings
from pathlib import Path
import numpy as np
import yaml
import torch
from torch import nn
from advent.model.deeplabv2 import get_deeplab_v2
from test_save_scripts import eval_best
from advent.utils.datasets import get_loader
from advent.utils.tools import (
load_opts,
set_mode,
# avg_duration,
flatten_opts,
print_opts
)
# from time import time
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore")
def get_arguments():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description="Code for domain adaptation (DA) training")
parser.add_argument('--cfg', type=str, default="shared/advent.yml",
help='optional config file', )
parser.add_argument("--random-train", action="store_true",
help="not fixing random seed.")
parser.add_argument("--viz-every-iter", type=int, default=None,
help="visualize results.")
parser.add_argument("--exp-suffix", type=str, default=None,
help="optional experiment suffix")
parser.add_argument(
"-d",
"--data",
help="yaml file for the data",
default="shared/config.yml",
)
parser.add_argument(
"-n",
"--no_check",
action="store_true",
default=False,
help="Prevent sample existence checking for faster dev",
)
return parser.parse_args()
def main():
# --------------------------
# ----- Load Options -----
# --------------------------
args = get_arguments()
print('Called with args:')
print(args)
assert args.cfg is not None, 'Missing cfg file'
root = Path(__file__).parent.resolve()
cfg = load_opts(path=root / args.cfg, default="shared/config.yml")
cfg = set_mode("train", cfg)
flats = flatten_opts(cfg)
print_opts(flats)
cfg.model.is_train = False
cfg.data.loaders.batch_size = 1
comet_exp = Experiment(workspace=cfg.workspace, project_name=cfg.project_name)
flats = flatten_opts(cfg)
comet_exp.log_parameters(flats)
# auto-generate exp name if not specified
if cfg.EXP_NAME == '':
cfg.EXP_NAME = f'{cfg.SOURCE}2{cfg.TARGET}_{cfg.TRAIN.MODEL}_{cfg.TRAIN.DA_METHOD}'
if args.exp_suffix:
cfg.EXP_NAME += f'_{args.exp_suffix}'
# auto-generate snapshot path if not specified
if cfg.TRAIN.SNAPSHOT_DIR == '':
cfg.TRAIN.SNAPSHOT_DIR = osp.join(cfg.EXP_ROOT_SNAPSHOT, cfg.EXP_NAME)
os.makedirs(cfg.TRAIN.SNAPSHOT_DIR, exist_ok=True)
print('Using config:')
pprint.pprint(cfg)
# INIT
_init_fn = None
if not args.random_train:
torch.manual_seed(cfg.TRAIN.RANDOM_SEED)
torch.cuda.manual_seed(cfg.TRAIN.RANDOM_SEED)
np.random.seed(cfg.TRAIN.RANDOM_SEED)
random.seed(cfg.TRAIN.RANDOM_SEED)
def _init_fn(worker_id):
np.random.seed(cfg.TRAIN.RANDOM_SEED + worker_id)
if os.environ.get('ADVENT_DRY_RUN', '0') == '1':
return
# LOAD SEGMENTATION NET
assert osp.exists(cfg.TRAIN.RESTORE_FROM), f'Missing init model {cfg.TRAIN.RESTORE_FROM}'
if cfg.TRAIN.MODEL == 'DeepLabv2':
model = get_deeplab_v2(num_classes=cfg.NUM_CLASSES, multi_level=cfg.TRAIN.MULTI_LEVEL)
saved_state_dict = torch.load(cfg.TRAIN.RESTORE_FROM)
if 'DeepLab_resnet_pretrained_imagenet' in cfg.TRAIN.RESTORE_FROM:
new_params = model.state_dict().copy()
for i in saved_state_dict:
i_parts = i.split('.')
if not i_parts[1] == 'layer5':
new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
model.load_state_dict(new_params)
else:
model.load_state_dict(saved_state_dict)
else:
raise NotImplementedError(f"Not yet supported {cfg.TRAIN.MODEL}")
print('Model loaded')
#source_loader = get_loader(cfg, real=False, no_check=args.no_check)
target_loader = get_loader(cfg, real=True, no_check=args.no_check)
with open(osp.join(cfg.TRAIN.SNAPSHOT_DIR, 'train_cfg.yml'), 'w') as yaml_file:
yaml.dump(cfg, yaml_file, default_flow_style=False)
device = cfg.GPU_ID
eval_best(cfg, model, device, target_loader, comet_exp, True)
if __name__ == '__main__':
main()