forked from chraibi/cellular_automata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasep_fast.py
178 lines (161 loc) · 6.92 KB
/
asep_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Implementation of the Asymmetric Simple Exclusion Process (ASEP)
# Copyright (C) 2014-2015 Mohcine Chraibi
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# contact: m.chraibi@gmail.com
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import time
import logging
import argparse
import os
logfile = 'log.dat'
logging.basicConfig(filename=logfile, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def get_parser_args():
parser = argparse.ArgumentParser(description='ASEP - TASEP')
parser.add_argument('-n', '--np', type=int, default=10, help='number of agents (default 10)')
parser.add_argument('-N', '--nr', type=int, default=1, help='number of runs (default 1)')
parser.add_argument('-m', '--ms', type=int, default=100, help='max simulation steps (default 100)')
parser.add_argument('-w', '--width', type=int, default=50, help='width of the system (default 50)')
parser.add_argument('-p', '--plotP', action='store_const', const=1, default=0, help='plot Pedestrians')
parser.add_argument('-r', '--shuffle', action='store_const', const=1, default=0, help='random shuffle')
parser.add_argument('-v', '--reverse', action='store_const', const=1, default=0, help='reverse sequential update')
parser.add_argument('-l', '--log', type=argparse.FileType('w'), default='log.dat',
help='log file (default log.dat)')
args = parser.parse_args()
return args
def init_cells(num_peds, num_cells):
"""
distribute N pedestrians in box
"""
if num_peds > num_cells:
num_peds = num_cells
cells = np.ones(num_peds, int) # pedestrians
zero_cells = np.zeros(num_cells - num_peds, int) # the rest of cells in the box
cells = np.hstack((cells, zero_cells)) # put 0s and 1s together
np.random.shuffle(cells) # shuffle them
return cells
def plot_cells(state_cells, walls_inf, i):
"""
plot the actual state of the cells. we need to make 'bad' walls to better visualize the cells
:param state_cells: state of the cells
:param walls_inf: walls for visualisation purposes
:param i: index for figures
"""
walls_inf = walls_inf * np.Inf
tmp_cells = np.vstack((walls_inf, state_cells))
tmp_cells = np.vstack((tmp_cells, walls_inf))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.cla()
cmap = plt.get_cmap('gray')
cmap.set_bad(color='k', alpha=0.8)
im = ax.imshow(tmp_cells, cmap=cmap, vmin=0, vmax=1, interpolation='nearest')
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='1%', pad=0.1)
plt.colorbar(im, cax=cax, ticks=[0, 1])
ax.set_axis_off()
num = sum(state_cells)
text = "t: %3.3d | n: %d\n" % (i, num)
plt.title("%20s" % text, rotation=0, fontsize=10, verticalalignment='bottom')
figure_name = os.path.join('pngs', 'peds%.3d.png' % i)
plt.savefig(figure_name, dpi=100, facecolor='lightgray')
def print_logs(num_pedestrians, system_width, simulation_steps, evac_time, total_runtime, nruns, vel, d):
"""
print some information to the screen
:rtype : none
"""
print('\n')
print ('Simulation space (%.2f x 1) m^2' % system_width)
print ('Mean Evacuation time: %.2f s, runs: %d' % ((evac_time * dt) / nruns, nruns))
print ('max simulation steps %d' % simulation_steps)
print ('Total Run time: %.2f s' % total_runtime)
print ('Factor: %.2f s' % (dt * evac_time / total_runtime))
print('--------------------------')
print ('N %d mean_velocity %.2f [m/s] density %.2f [1/m]' % (num_pedestrians, vel, d))
print('--------------------------')
# http://stackoverflow.com/questions/27239173/numpy-vectorize-a-parallel-update
def boundary(boundary_cells):
"""enforce boundary conditions
:rtype : np.ndarray
"""
boundary_cells = np.concatenate([[0], boundary_cells, [0]]) # add padding cells
boundary_cells[0] = boundary_cells[-2]
boundary_cells[-1] = boundary_cells[1]
return boundary_cells
#@profile
def asep_parallel(cells):
"""
update of cells
:parameter: actual state of cells
:rtype : cells with new state and number of moves
"""
assert isinstance(cells, np.ndarray)
cells = boundary(cells)
center = cells[1:-1]
left = cells[0:-2]
right = cells[2:]
ones = (center == 1)
zeros = (center == 0)
result = np.copy(center)
result[zeros] = left[zeros]
result[ones] = right[ones]
nmoves = np.sum(np.logical_xor(center, result)) / 2
return result, nmoves
if __name__ == "__main__":
args = get_parser_args() # get arguments
# init parameters
N_pedestrians = args.np
shuffle = args.shuffle
reverse = args.reverse
drawP = args.plotP
#######################################################
max_steps = args.ms # simulation time
num_runs = args.nr # repeat simulations, for TASEP
steps = range(max_steps)
cellSize = 0.4 # m
max_velocity = 1.2 # m/s
dt = cellSize / max_velocity # time step
width = args.width # in m
n_cells = int(width / cellSize) # number of cells
if N_pedestrians >= n_cells:
N_pedestrians = n_cells - 1
print('warning: maximum of %d cells are allowed' % N_pedestrians)
else:
print('info: n_pedestrians=%d (max_pedestrians=%d)' % (N_pedestrians, n_cells))
#######################################################
t1 = time.time()
simulation_time = 0
density = float(N_pedestrians) / width
walls = np.ones(n_cells)
velocities = [] # velocities over all runs
for n in range(num_runs):
actual_cells = init_cells(N_pedestrians, n_cells)
velocity = 0
for step in steps: # simulation loop
if drawP:
plot_cells(actual_cells, walls, step)
actual_cells, num_moves = asep_parallel(actual_cells)
v = num_moves * max_velocity / float(N_pedestrians)
velocity += v
velocity /= max_steps
velocities.append(velocity)
simulation_time += max_steps
print ('\t run: %3d ---- vel: %.2f | den: %.2f' % (n, velocity, density))
t2 = time.time()
mean_velocity = np.mean(velocities)
print_logs(N_pedestrians, width, max_steps, simulation_time, t2 - t1, num_runs, mean_velocity, density)