-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathusbtmc_app.c
612 lines (549 loc) · 18.5 KB
/
usbtmc_app.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Nathan Conrad
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#define DAC_PIN PA02
#define ADC_PIN PA04
#define GPIO_PIN PA10
#define DAC_MAX_VALUE 1024 // 10bit value
#define DAC_REF_VOLTAGE 3.3
#define ADC_MAX_VALUE 4096 // 12bit value
#define ADC_REF_VOLTAGE 3.3
#define IDN "SAMD21"
#define IDN_QUERY "*idn?"
#define RST_CMD "*rst"
#define DAC_CMD "sourc1:volt:lev " // SOURCe1:VOLTage:LEVel
#define DAC_QUERY "sourc1:volt:lev?" // SOURCe1:VOLTage:LEVel
#define ADC_QUERY "sens1:volt?" // SENSe1:VOLTage
#define GPIO_LEV_CMD "gpio1:lev " // GPIO1:LEVel
#define GPIO_LEV_QUERY "gpio1:lev?" // GPIO1:LEVel
#define GPIO_DIR_CMD "gpio1:dir " // GPIO1:DIRection
#define GPIO_DIR_QUERY "gpio1:dir?" // GPIO1:DIRection
#define END_RESPONSE "\n" // USB488
#include <strings.h>
#include <stdlib.h> /* atoi */
#include <stdio.h> /* fprintf */
#include "tusb.h"
#include "bsp/board.h"
#include "main.h"
#include "sam.h" /* ADC, DAC, GPIO */
char * get_value(char *in_string);
uint32_t adc_get_sample(void);
void ftoa(float num, char *str);
#if (CFG_TUD_USBTMC_ENABLE_488)
static usbtmc_response_capabilities_488_t const
#else
static usbtmc_response_capabilities_t const
#endif
tud_usbtmc_app_capabilities =
{
.USBTMC_status = USBTMC_STATUS_SUCCESS,
.bcdUSBTMC = USBTMC_VERSION,
.bmIntfcCapabilities =
{
.listenOnly = 0,
.talkOnly = 0,
.supportsIndicatorPulse = 1
},
.bmDevCapabilities = {
.canEndBulkInOnTermChar = 0
},
#if (CFG_TUD_USBTMC_ENABLE_488)
.bcdUSB488 = USBTMC_488_VERSION,
.bmIntfcCapabilities488 =
{
.supportsTrigger = 1,
.supportsREN_GTL_LLO = 0,
.is488_2 = 1
},
.bmDevCapabilities488 =
{
.SCPI = 1,
.SR1 = 0,
.RL1 = 0,
.DT1 =0,
}
#endif
};
#define IEEE4882_STB_QUESTIONABLE (0x08u)
#define IEEE4882_STB_MAV (0x10u)
#define IEEE4882_STB_SER (0x20u)
#define IEEE4882_STB_SRQ (0x40u)
//static const char idn[] = "TinyUSB,Seeeduino Xiao,v1\r\n";
static volatile uint8_t status;
// 0=not query, 1=queried, 2=delay,set(MAV), 3=delay 4=ready?
// (to simulate delay)
static volatile uint16_t queryState = 0;
static volatile uint32_t queryDelayStart;
static volatile uint32_t bulkInStarted;
static volatile bool idnQuery;
static volatile bool rst_cmd;
static volatile bool dac_cmd;
static volatile bool dac_query;
static volatile bool adc_query;
static volatile bool gpio_lev_cmd;
static volatile bool gpio_lev_query;
static volatile bool gpio_dir_cmd;
static volatile bool gpio_dir_query;
static uint32_t resp_delay = 125u; // Adjustable delay, to allow for better testing
static size_t buffer_len;
static size_t buffer_tx_ix; // for transmitting using multiple transfers
static uint8_t buffer[225]; // A few packets long should be enough.
char adc_voltage_str[10];
char dac_voltage_str[10];
char gpio_lev_str[2];
char gpio_dir_str[5];
static usbtmc_msg_dev_dep_msg_in_header_t rspMsg = {
.bmTransferAttributes =
{
.EOM = 1,
.UsingTermChar = 0
}
};
void tud_usbtmc_open_cb(uint8_t interface_id)
{
(void)interface_id;
tud_usbtmc_start_bus_read();
}
#if (CFG_TUD_USBTMC_ENABLE_488)
usbtmc_response_capabilities_488_t const *
#else
usbtmc_response_capabilities_t const *
#endif
tud_usbtmc_get_capabilities_cb()
{
return &tud_usbtmc_app_capabilities;
}
bool tud_usbtmc_msg_trigger_cb(usbtmc_msg_generic_t* msg) {
(void)msg;
// Let trigger set the SRQ
status |= IEEE4882_STB_SRQ;
return true;
}
bool tud_usbtmc_msgBulkOut_start_cb(usbtmc_msg_request_dev_dep_out const * msgHeader)
{
(void)msgHeader;
buffer_len = 0;
if(msgHeader->TransferSize > sizeof(buffer))
{
return false;
}
return true;
}
bool tud_usbtmc_msg_data_cb(void *data, size_t len, bool transfer_complete)
{
// If transfer isn't finished, we just ignore it (for now)
if(len + buffer_len < sizeof(buffer))
{
memcpy(&(buffer[buffer_len]), data, len);
buffer_len += len;
}
else
{
return false; // buffer overflow!
}
queryState = transfer_complete;
idnQuery = false;
rst_cmd = false;
dac_cmd = false;
dac_query = false;
adc_query = false;
gpio_lev_cmd = false;
gpio_lev_query = false;
gpio_dir_cmd = false;
gpio_dir_query = false;
if(transfer_complete && (len >=4) && !strncasecmp(IDN_QUERY,data,5))
{
idnQuery = true;
}
else if (transfer_complete && (len >=4) && !strncasecmp(RST_CMD,data,4))
{
rst_cmd = true;
DAC->DATA.reg = 0x0000; // clear DAC value
PORT->Group[0].DIRSET.reg = PORT_PA10; // PA10 as output
PORT->Group[0].OUTCLR.reg = PORT_PA10; // drive low value
}
else if (transfer_complete && (len >=16) && !strncasecmp(DAC_CMD,data,16))
{
dac_cmd = true;
char *ptr_value = get_value(data);
float dac_voltage = strtof(ptr_value,NULL);
uint16_t dac_value = (int)( (dac_voltage / DAC_REF_VOLTAGE) * DAC_MAX_VALUE );
DAC->DATA.reg = dac_value;
}
else if (transfer_complete && (len >= 16) && !strncasecmp(DAC_QUERY,data,16))
{
dac_query = true;
float dac_voltage = (float)(DAC->DATA.reg) * (DAC_REF_VOLTAGE / DAC_MAX_VALUE);
ftoa(dac_voltage,dac_voltage_str);
// strcat(dac_voltage_str,"\n");
}
else if (transfer_complete && (len >= 11) && !strncasecmp(ADC_QUERY,data,11))
{
adc_query = true;
float adc_voltage =(float)(adc_get_sample()) / ADC_MAX_VALUE * ADC_REF_VOLTAGE;
ftoa(adc_voltage,adc_voltage_str);
}
else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_LEV_CMD,data,10))
{
gpio_lev_cmd = true;
char *ptr_value = get_value(data);
int gpio_level = atoi(ptr_value);
if (gpio_level == 1)
{
PORT->Group[0].OUTSET.reg = PORT_PA10; // drive high value
}
else if (gpio_level == 0)
{
PORT->Group[0].OUTCLR.reg = PORT_PA10; // drive low value
}
}
else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_LEV_QUERY,data,10))
{
gpio_lev_query = true;
// if ((PORT->Group[0].IN.reg == PORT_PA10) || ((PORT->Group[0].DIR.reg & PORT_PA10) && (PORT->Group[0].OUT.reg & PORT_PA10)))
if (PORT->Group[0].IN.reg & PORT_PA10)
{
strcpy(gpio_lev_str,"1");
}
else
{
strcpy(gpio_lev_str,"0");
}
}
else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_DIR_CMD,data,10))
{
gpio_dir_cmd = true;
char *ptr_value = get_value(data);
if (!strncasecmp("IN",ptr_value,2))
{
PORT->Group[0].DIRCLR.reg = PORT_PA10; // PA10 as input
// PORT->Group[0].PINCFG[10].reg = PORT_PINCFG_INEN; // Enable input
}
else if (!strncasecmp("OUT",ptr_value,3))
{
PORT->Group[0].DIRSET.reg = PORT_PA10; // PA10 as output
}
}
else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_DIR_QUERY,data,10))
{
gpio_dir_query = true;
if (PORT->Group[0].DIR.reg & PORT_PA10)
{
strcpy(gpio_dir_str,"OUT");
}
else
{
strcpy(gpio_dir_str,"IN");
}
}
if(transfer_complete && !strncasecmp("delay ",data,5))
{
queryState = 0;
int d = atoi((char*)data + 5);
if(d > 10000)
d = 10000;
if(d<0)
d=0;
resp_delay = (uint32_t)d;
}
tud_usbtmc_start_bus_read();
return true;
}
bool tud_usbtmc_msgBulkIn_complete_cb()
{
if((buffer_tx_ix == buffer_len) || idnQuery) // done
{
status &= (uint8_t)~(IEEE4882_STB_MAV); // clear MAV
queryState = 0;
bulkInStarted = 0;
buffer_tx_ix = 0;
}
tud_usbtmc_start_bus_read();
return true;
}
static unsigned int msgReqLen;
bool tud_usbtmc_msgBulkIn_request_cb(usbtmc_msg_request_dev_dep_in const * request)
{
rspMsg.header.MsgID = request->header.MsgID,
rspMsg.header.bTag = request->header.bTag,
rspMsg.header.bTagInverse = request->header.bTagInverse;
msgReqLen = request->TransferSize;
#ifdef xDEBUG
uart_tx_str_sync("MSG_IN_DATA: Requested!\r\n");
#endif
if(queryState == 0 || (buffer_tx_ix == 0))
{
TU_ASSERT(bulkInStarted == 0);
bulkInStarted = 1;
// > If a USBTMC interface receives a Bulk-IN request prior to receiving a USBTMC command message
// that expects a response, the device must NAK the request (*not stall*)
}
else
{
size_t txlen = tu_min32(buffer_len-buffer_tx_ix,msgReqLen);
tud_usbtmc_transmit_dev_msg_data(&buffer[buffer_tx_ix], txlen,
(buffer_tx_ix+txlen) == buffer_len, false);
buffer_tx_ix += txlen;
}
// Always return true indicating not to stall the EP.
return true;
}
void usbtmc_app_task_iter(void) {
switch(queryState) {
case 0:
break;
case 1:
queryDelayStart = board_millis();
queryState = 2;
break;
case 2:
if( (board_millis() - queryDelayStart) > resp_delay) {
queryDelayStart = board_millis();
queryState=3;
status |= 0x10u; // MAV
status |= 0x40u; // SRQ
}
break;
case 3:
if( (board_millis() - queryDelayStart) > resp_delay) {
queryState = 4;
}
break;
case 4: // time to transmit;
if(bulkInStarted && (buffer_tx_ix == 0)) {
if(idnQuery)
{
tud_usbtmc_transmit_dev_msg_data(IDN, tu_min32(sizeof(IDN)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else if (adc_query)
{
tud_usbtmc_transmit_dev_msg_data(adc_voltage_str, tu_min32(sizeof(adc_voltage_str)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else if (dac_query)
{
tud_usbtmc_transmit_dev_msg_data(dac_voltage_str, tu_min32(sizeof(dac_voltage_str)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else if (gpio_lev_query)
{
tud_usbtmc_transmit_dev_msg_data(gpio_lev_str, tu_min32(sizeof(gpio_lev_str)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else if (gpio_dir_query)
{
tud_usbtmc_transmit_dev_msg_data(gpio_dir_str, tu_min32(sizeof(gpio_dir_str)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else if (rst_cmd || dac_cmd || gpio_lev_cmd || gpio_dir_cmd)
{
tud_usbtmc_transmit_dev_msg_data(END_RESPONSE, tu_min32(sizeof(END_RESPONSE)-1,msgReqLen),true,false);
queryState = 0;
bulkInStarted = 0;
}
else
{
buffer_tx_ix = tu_min32(buffer_len,msgReqLen);
tud_usbtmc_transmit_dev_msg_data(buffer, buffer_tx_ix, buffer_tx_ix == buffer_len, false);
}
// MAV is cleared in the transfer complete callback.
}
break;
default:
TU_ASSERT(false,);
return;
}
}
bool tud_usbtmc_initiate_clear_cb(uint8_t *tmcResult)
{
*tmcResult = USBTMC_STATUS_SUCCESS;
queryState = 0;
bulkInStarted = false;
status = 0;
return true;
}
bool tud_usbtmc_check_clear_cb(usbtmc_get_clear_status_rsp_t *rsp)
{
queryState = 0;
bulkInStarted = false;
status = 0;
buffer_tx_ix = 0u;
buffer_len = 0u;
rsp->USBTMC_status = USBTMC_STATUS_SUCCESS;
rsp->bmClear.BulkInFifoBytes = 0u;
return true;
}
bool tud_usbtmc_initiate_abort_bulk_in_cb(uint8_t *tmcResult)
{
bulkInStarted = 0;
*tmcResult = USBTMC_STATUS_SUCCESS;
return true;
}
bool tud_usbtmc_check_abort_bulk_in_cb(usbtmc_check_abort_bulk_rsp_t *rsp)
{
(void)rsp;
tud_usbtmc_start_bus_read();
return true;
}
bool tud_usbtmc_initiate_abort_bulk_out_cb(uint8_t *tmcResult)
{
*tmcResult = USBTMC_STATUS_SUCCESS;
return true;
}
bool tud_usbtmc_check_abort_bulk_out_cb(usbtmc_check_abort_bulk_rsp_t *rsp)
{
(void)rsp;
tud_usbtmc_start_bus_read();
return true;
}
void tud_usbtmc_bulkIn_clearFeature_cb(void)
{
}
void tud_usbtmc_bulkOut_clearFeature_cb(void)
{
tud_usbtmc_start_bus_read();
}
// Return status byte, but put the transfer result status code in the rspResult argument.
uint8_t tud_usbtmc_get_stb_cb(uint8_t *tmcResult)
{
uint8_t old_status = status;
status = (uint8_t)(status & ~(IEEE4882_STB_SRQ)); // clear SRQ
*tmcResult = USBTMC_STATUS_SUCCESS;
// Increment status so that we see different results on each read...
return old_status;
}
bool tud_usbtmc_indicator_pulse_cb(tusb_control_request_t const * msg, uint8_t *tmcResult)
{
(void)msg;
led_indicator_pulse();
*tmcResult = USBTMC_STATUS_SUCCESS;
return true;
}
//---------------------------- New Code ----------------------------//
void adc_setup(void) {
PM->APBCMASK.reg |= PM_APBCMASK_ADC; // enable ADC
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | // enable clock
GCLK_CLKCTRL_GEN_GCLK0 | // enable GCLK0
GCLK_CLKCTRL_ID_ADC; // ADC will get GCLK0
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
// get FUSE calibration values
uint32_t adc_bias = (*((uint32_t *) ADC_FUSES_BIASCAL_ADDR ) & ADC_FUSES_BIASCAL_Msk ) >> ADC_FUSES_BIASCAL_Pos;
uint32_t adc_linearity = (*((uint32_t *) ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
adc_linearity |= ((*((uint32_t *) ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
while (ADC->STATUS.bit.SYNCBUSY); // Wait for synchronization
// load the calibration values
ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(adc_bias) | ADC_CALIB_LINEARITY_CAL(adc_linearity);
while (ADC->STATUS.bit.SYNCBUSY); // Wait for synchronization
ADC->REFCTRL.reg = ADC_REFCTRL_REFSEL_INTVCC1; // use internal ref which is 3.3/2 = 1.65V
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1; // use single sample
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV4 | // 8MHz / 512 = 32kHz clock freq
ADC_CTRLB_RESSEL_12BIT; // 12bit results
ADC->INPUTCTRL.reg = ADC_INPUTCTRL_GAIN_DIV2 | // cut input in half to get back to 0 to 3.3V range
ADC_INPUTCTRL_MUXNEG_GND | // use chip GND
ADC_INPUTCTRL_MUXPOS_PIN4; // AIN4, PA04
PORT->Group[0].DIRCLR.reg = PORT_PA04; // PA04 as input
PORT->Group[0].PINCFG[4].reg |= PORT_PINCFG_PMUXEN; // PA04 as peripheral
PORT->Group[0].PMUX[2].reg = PORT_PMUX_PMUXE_B; // PA04 as function B, analog
ADC->CTRLA.bit.ENABLE = true; // enable ADC
while (ADC->STATUS.bit.SYNCBUSY); // Wait for synchronization
ADC->SWTRIG.bit.START = true; // Use software trigger to start conversion
while (ADC->INTFLAG.bit.RESRDY == 0); // wait for results
ADC->INTFLAG.reg = ADC_INTFLAG_RESRDY; // clear result flag
// uint32_t adc_result = ADC->RESULT.reg; // throw away first result
}
uint32_t adc_get_sample(void) {
ADC->SWTRIG.bit.START = true; // Use software trigger to start conversion
while (ADC->INTFLAG.bit.RESRDY == 0); // wait for results
ADC->INTFLAG.reg = ADC_INTFLAG_RESRDY; // clear result flag
return ADC->RESULT.reg * 2.0;
}
void dac_setup(void) {
PM->APBCMASK.reg |= PM_APBCMASK_DAC; // Enable peripheral clock for DAC
GCLK->GENCTRL.reg = GCLK_GENCTRL_IDC | // Set the duty cycle to 50/50 HIGH/LOW
GCLK_GENCTRL_GENEN | // Enable GCLK
GCLK_GENCTRL_SRC_DFLL48M | // Set the clock source to 48MHz
GCLK_GENCTRL_ID(3); // Set clock source on GCLK 3
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | // enable clock
GCLK_CLKCTRL_GEN_GCLK3 | // enable GCLK3
GCLK_CLKCTRL_ID_DAC; //
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
PORT->Group[0].DIRSET.reg = PORT_PA02; // PA02 as output
PORT->Group[0].PINCFG[2].reg |= PORT_PINCFG_PMUXEN; // PA02 as peripheral
PORT->Group[0].PMUX[1].reg = PORT_PMUX_PMUXE_B; // PA02 as function B, analog
DAC->CTRLB.reg |= DAC_CTRLB_EOEN | // external pin enable
DAC_CTRLB_REFSEL_AVCC; // use 3.3V
uint16_t dac_value = (int)( (1.01 / DAC_REF_VOLTAGE) * DAC_MAX_VALUE );
DAC->DATA.reg = dac_value;
DAC->CTRLA.reg = DAC_CTRLA_ENABLE; // Enable DAC
while (DAC->STATUS.bit.SYNCBUSY); // Wait for synchronization
}
void gpio_setup(void) {
PORT->Group[0].DIRSET.reg = PORT_PA10; // PA10 as output
PORT->Group[0].OUTCLR.reg = PORT_PA10; // PA10 initialized low
PORT->Group[0].PINCFG[10].reg = PORT_PINCFG_INEN; // input enable
}
char * get_value(char *in_string) {
char *ptr = strrchr(in_string,' ') + 1;
return ptr;
}
// char *ptr_value = get_value(scpi_string);
// float value = strtof(ptr_value,NULL);
// char *command = get_command(scpi_string,ptr_value);
char * get_command(char *in_string, char *ptr_value) {
uint32_t command_len = ptr_value - in_string - 1;
char *command = (char *) malloc(command_len +1);
memcpy(command, in_string, command_len);
command[command_len] = '\0';
return command;
}
void ftoa(float num, char *str)
{
int intpart = num;
int intdecimal;
uint32_t i;
float decimal_part;
char decimal[20];
memset(str, 0x0, 20);
itoa(num, str, 10);
strcat(str, ".");
decimal_part = num - intpart;
intdecimal = decimal_part * 1000;
if(intdecimal < 0)
{
intdecimal = -intdecimal;
}
itoa(intdecimal, decimal, 10);
for(i =0;i < (3 - strlen(decimal));i++)
{
strcat(str, "0");
}
strcat(str, decimal);
}