-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathsketch.cpp
582 lines (563 loc) · 22.8 KB
/
sketch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "kvec.h"
#include "htab.h"
#include "ksort.h"
#include "Correct.h"
#include "kalloc.h"
#define MAX_HIGH_OCC 8 // TODO: don't hard code if we need to tune this parameter
#define MAX_MAX_HIGH_OCC 16
#define GMC(a, x,y,xn) ((a)[(x)*(xn)+(y)])
#define GL(x, i) ((int64_t)((uint32_t)((x).a[(i)])))
#define A_M(p, i) ((i) >= 0 && (p).a[(i)].rid > 0)
void debug_refine(ha_mz1_t *ma, uint64_t *mmt, int32_t sn, int32_t n, int32_t m, int32_t end)
{
uint64_t ks = end;
int64_t t = 0, i, k, sp = -1, ep = -1, ovlp, tot = mmt[end]&0xffffffff, nt = 0;;
while (ks != 0xffffffff)
{
i = ks/m; k = ks%m;
ks = mmt[ks]>>32;
if(ks == 0xffffffff || (int32_t)(ks/m) == (i-1))
{
t++;
ovlp = ((MIN(ep, (int64_t)ma[k].pos) >= MAX(sp, (int64_t)(ma[k].pos+1-ma[k].span)))?
MIN(ep, (int64_t)ma[k].pos) - MAX(sp, (int64_t)(ma[k].pos+1-ma[k].span)) + 1:0);
if(ovlp != 0) fprintf(stderr, "ERROR-OVLP\n");
if(sp == -1 || sp > (ma[k].pos+1-ma[k].span)) sp = ma[k].pos+1-ma[k].span;
if(ep == -1 || ep < ma[k].pos) ep = ma[k].pos;
nt += (ma[k].rid);
}
}
if(t != sn) fprintf(stderr, "ERROR-TN, t: %ld, sn: %d\n", t, sn);
if(nt != tot) fprintf(stderr, "ERROR-TOT, nt: %ld, tot: %ld\n", nt, tot);
}
void dbg_boundary(ha_mz1_v *p, st_mt_t *mt, int32_t w, int32_t k, int32_t tot_l)
{
if(tot_l < w + k -1) return;
int32_t i, m, n = p->n, s, a;
for (i = 0; i < n; i++){
if(GL(*mt, i) >= w+k-1){
for (m = s = a = 0; m <= i; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) <= w+k-1){
a++;
if(mt->a[m]&0x100000000) s++;
}
}
if(a > 0 && s == 0){
fprintf(stderr, "\nERROR1, s: %d, n: %d, tot_l: %d, end_l: %ld\n", s, n, tot_l, GL(*mt, i));
for (m = s = a = 0; m <= i; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) <= w+k-1){
fprintf(stderr, "lp: %ld\n", GL(*mt, m));
a++;
if(mt->a[m]&0x100000000) s++;
}
}
}
break;
}
}
if(i == n){
for (m = s = a = 0; m < n; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) <= w+k-1){
a++;
if(mt->a[m]&0x100000000) s++;
}
}
if(a > 0 && s == 0) fprintf(stderr, "ERROR2\n");
}
for (i = n-1; i >= 0; i--)
{
if (GL(*mt, i) + w <= tot_l + 1) {
for (m = i, s = a = 0; m < n; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) + w >= tot_l + 1){
a++;
if(mt->a[m]&0x100000000) s++;
}
}
if(a > 0 && s == 0) {
fprintf(stderr, "\nERROR3, s: %d, n: %d, tot_l: %d, end_l: %ld\n", s, n, tot_l, GL(*mt, i));
for (m = i, s = a = 0; m < n; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) + w >= tot_l + 1){
fprintf(stderr, "lp: %ld\n", GL(*mt, m));
a++;
if(mt->a[m]&0x100000000) s++;
}
}
}
break;
}
}
if(i < 0){
for (m = s = a = 0; m < n; m++){
if(!A_M(*p, m)) continue;
if(GL(*mt, m) + w >= tot_l + 1){
a++;
if(mt->a[m]&0x100000000) s++;
}
}
if(a > 0 && s == 0) fprintf(stderr, "ERROR4\n");
}
}
void debug_pl(const char *str, int len, int w, int k, int is_hpc, ha_mz1_v *p, const void *hf, st_mt_t *mt)
{
int i, l, dbi, dbcnt = 0, kmer_span = 0;
tiny_queue_t tq;
memset(&tq, 0, sizeof(tiny_queue_t));
uint64_t shift1 = k - 1, mask = (1ULL<<k) - 1, kmer[4] = {0,0,0,0};
for (i = l = dbi = 0; i < len; ++i) {
int c = seq_nt4_table[(uint8_t)str[i]];
if (c < 4) { // not an ambiguous base
int z;
if (is_hpc) {
int skip_len = 1;
if (i + 1 < len && seq_nt4_table[(uint8_t)str[i + 1]] == c) {
for (skip_len = 2; i + skip_len < len; ++skip_len)
if (seq_nt4_table[(uint8_t)str[i + skip_len]] != c)
break;
i += skip_len - 1; // put $i at the end of the current homopolymer run
}
tq_push(&tq, skip_len);
kmer_span += skip_len;
///how many bases that are covered by this HPC k-mer
///kmer_span includes at most k HPC elements
if (tq.count > k) kmer_span -= tq_shift(&tq);
} else kmer_span = l + 1 < k? l + 1 : k;
///kmer_span should be used for HPC k-mer
///non-HPC k-mer, kmer_span should be k
///kmer_span is used to calculate anchor pos on reverse complementary strand
kmer[0] = (kmer[0] << 1 | (c&1)) & mask; // forward k-mer
kmer[1] = (kmer[1] << 1 | (c>>1)) & mask;
kmer[2] = kmer[2] >> 1 | (uint64_t)(1 - (c&1)) << shift1; // reverse k-mer
kmer[3] = kmer[3] >> 1 | (uint64_t)(1 - (c>>1)) << shift1;
if (kmer[1] == kmer[3]) continue; // skip "symmetric k-mers" as we don't know it strand
z = kmer[1] < kmer[3]? 0 : 1; // strand
++l;
if (l >= k && kmer_span < 256) {
uint64_t y;
int32_t cnt;
y = yak_hash64_64(kmer[z<<1|0]) + yak_hash64_64(kmer[z<<1|1]);
cnt = hf? ha_ft_cnt(hf, y) : 0;
for (dbi = 0; dbi < (int32_t)mt->n; dbi++)
{
if(p->a[dbi].x == y && p->a[dbi].rid == cnt && p->a[dbi].pos == i && p->a[dbi].rev == z && p->a[dbi].span == kmer_span)
{
if(l != (int)mt->a[dbi]) fprintf(stderr, "ERROR\n");
dbcnt++;
}
}
}
} else l = 0, tq.count = tq.front = 0, kmer_span = 0;
}
if(dbcnt != (int32_t)mt->n) fprintf(stderr, "ERROR\n");
if(mt->n != p->n) fprintf(stderr, "ERROR\n");
for (dbi = 1; dbi < (int32_t)mt->n; dbi++)
{
if(p->a[dbi].pos <= p->a[dbi-1].pos || (int)mt->a[dbi] <= (int)mt->a[dbi-1])
{
fprintf(stderr, "ERROR\n");
}
}
}
static inline int mz1_mzcmp(const ha_mz1_t *a, const ha_mz1_t *b){return a->rid < b->rid? -1 : a->rid > b->rid? 1 : ((a->x > b->x) - (a->x < b->x));}
#define mz1_mz_lt(a, b) (mz1_mzcmp(&(a), &(b)) < 0)
KSORT_INIT(mz1_mz, ha_mz1_t, mz1_mz_lt)
static inline int mz2_mzcmp(const ha_mzl_t *a, const ha_mzl_t *b){return a->rid < b->rid? -1 : a->rid > b->rid? 1 : ((a->x > b->x) - (a->x < b->x));}
#define mz2_mz_lt(a, b) (mz2_mzcmp(&(a), &(b)) < 0)
KSORT_INIT(mz2_mz, ha_mzl_t, mz2_mz_lt)
#define HA_SC_INIT(sf, HType, VType, RidBits, PosBits)\
inline void sf##_hf_select(VType *p, int32_t si, int32_t ei, int32_t n, int32_t len, int32_t sample_dist, HType *b, int32_t force)\
{\
if(ei - si <= 1) return;\
int32_t ps = si < 0? 0 : p->a[si].pos;\
int32_t pe = ei == n? len : p->a[ei].pos;\
int32_t j, k, st = si + 1, en = ei;\
int32_t max_high_occ = (int32_t)((double)(pe - ps) / sample_dist + .499);\
if (max_high_occ > MAX_MAX_HIGH_OCC)\
max_high_occ = MAX_MAX_HIGH_OCC;\
for (j = st, k = 0; j < en && k < max_high_occ; ++j, ++k)\
b[k] = p->a[j], b[k].pos = j; /** b[].pos keeps the index in p->a[]**/\
ks_heapmake_##sf##_mz(k, b); /** initialize the binomial heap**/\
for (; j < en; ++j) { /** if there are more, choose top max_high_occ**/\
if (sf##_mz_lt(p->a[j], b[0])) { /** then update the heap**/\
b[0] = p->a[j], b[0].pos = j;\
ks_heapdown_##sf##_mz(0, k, b);\
}\
}\
/**ks_heapsort_mz(k, b); // sorting is not needed for now**/\
for (j = 0; j < k; ++j)\
if (b[j].rid < pe - ps || force)\
p->a[b[j].pos].rid = 0;\
}\
static inline int sf##_mzcmp_l(const VType *p, int32_t ai, int32_t bi)\
{\
if(ai >= 0 && bi >= 0){\
HType *a = &(p->a[ai]), *b = &(p->a[bi]);\
if(a->rid > 0 && b->rid > 0) return sf##_mzcmp(a, b);\
return (a->rid == 0) - (b->rid == 0);\
}\
return (ai < 0) - (bi < 0);\
}\
int32_t sf##_qfw(VType *p, st_mt_t *mt, int32_t n, int32_t tot_l, int32_t ws, int32_t i, int32_t *mi)\
{\
int32_t m, si;\
for (si = i, (*mi) = -1; i < n; i++){\
if(GL(*mt, i) >= ws || (i+1 < n && GL(*mt, i) < ws && GL(*mt, i+1) > ws) || \
(i+1 == n && tot_l >= ws && GL(*mt, i) < ws)){\
for (m = si; m <= i; m++){\
if(!A_M(*p, m)) continue;\
if(sf##_mzcmp_l(p, *mi, m) >= 0) (*mi) = m;\
}\
if((*mi) >= 0 && A_M(*p, *mi)){\
for (m = si; m <= i; m++){\
if(!A_M(*p, m)) continue;\
if(sf##_mzcmp_l(p, *mi, m) == 0) mt->a[m] |= 0x100000000;\
}\
}\
break;\
}\
}\
return i;\
}\
static void sf##_select_mz_h(VType *p, st_mt_t *mt, int len, int sample_dist, int32_t w, int32_t k, int32_t tot_l)\
{ /**for high-occ minimizers, choose up to max_high_occ in each high-occ streak**/\
int32_t i, mi = -1, si, last0 = -1, n = (int32_t)p->n, m = 0, ws = w + k - 1;\
if (n == 0) return;\
assert((int64_t)(n) < (int64_t)((((uint64_t)1)<<PosBits)));\
for (i = m = 0, last0 = -1; i <= n; ++i) {\
if (i == n || p->a[i].rid == 0) {\
if (i - last0 > 1) {\
int32_t ps = last0 < 0? 0 : p->a[last0].pos;\
int32_t pe = i == n? len : p->a[i].pos;\
if(((int32_t)((double)(pe - ps) / sample_dist + .499)) > 0){\
last0 = -2;\
m++;\
break;\
}\
}\
last0 = i;\
}\
}\
if (m == 0) return; /**no high-frequency k-mers; do nothing**/\
if(last0 >= -1) goto sf##_ff;\
i = 0;\
i = sf##_qfw(p, mt, n, tot_l, ws, i, &mi);\
if(i == n) goto sf##_ff;\
for (si = 0, i++; i < n; i++){\
for (; si < i; si++){\
if(GL(*mt, si) + w > GL(*mt, i)) break;\
}\
/**a new minimum; then write the old min**/\
if(sf##_mzcmp_l(p, i, mi) <= 0) {\
if(A_M(*p, mi)) mt->a[mi] |= 0x100000000;\
mi = i;\
}/**old min has moved outside the window**/\
else if(si > mi){\
if(A_M(*p, mi)) mt->a[mi] |= 0x100000000;\
for (m = si, mi = -1; m <= i; m++){\
if(sf##_mzcmp_l(p, mi, m) >= 0) mi = m;\
}\
if(A_M(*p, mi)){\
for (m = si; m <= i; m++){\
if(!A_M(*p, m)) continue;\
if(sf##_mzcmp_l(p, mi, m) == 0) mt->a[m] |= 0x100000000;\
}\
}\
}\
}\
if(A_M(*p, mi)) mt->a[mi] |= 0x100000000;\
for (i = n - 1; si < n && GL(*mt, si) + w <= tot_l + 1; si++){\
if(si > mi){\
if(A_M(*p, mi)) mt->a[mi] |= 0x100000000;\
for (m = si, mi = -1; m <= i; m++){\
if(sf##_mzcmp_l(p, mi, m) >= 0) mi = m;\
}\
if(A_M(*p, mi)){\
for (m = si; m <= i; m++){\
if(!A_M(*p, m)) continue;\
if(sf##_mzcmp_l(p, mi, m) == 0) mt->a[m] |= 0x100000000;\
}\
}\
}\
}\
/**dbg_boundary(p, mt, w, k, tot_l);**/\
HType b[MAX_MAX_HIGH_OCC];\
for (i = 0, last0 = -1; i <= n; ++i) {\
if (i == n || p->a[i].rid == 0) {\
if (i - last0 > 1) {\
int32_t ps = last0 < 0? 0 : p->a[last0].pos;\
int32_t pe = i == n? len : p->a[i].pos;\
if(((int32_t)((double)(pe - ps) / sample_dist + .499)) > 0){\
for (m = last0 + 1, mi = 0; m < i; ++m){\
if(mt->a[m]&0x100000000) p->a[m].rid = 0, mi++;\
}\
if(mi == 0) sf##_hf_select(p, last0, i, n, len, sample_dist, b, 0);\
}\
}\
last0 = i;\
}\
}\
sf##_ff:\
for (i = n = 0; i < (int32_t)p->n; ++i) /**squeeze out filtered minimizers**/\
if (p->a[i].rid == 0)\
p->a[n++] = p->a[i];\
p->n = n;\
}\
void sf##_refine_select(VType *mz, int32_t sidx, int32_t eidx, int32_t sn, int32_t min_freq, st_mt_t *mm, int32_t *rsi, int32_t *rei, void *km)\
{\
int32_t n = sn, m = eidx + 1 - sidx, i, k, t, mk=-1;\
uint64_t ix, kx, ks;\
kv_resize_km(km, uint64_t, *mm, mm->n+n*m);\
HType *ma = mz->a + sidx;\
uint64_t *mmt = mm->a + mm->n;\
/**fprintf(stderr, "[M::%s::] ==> +n: %d, m: %d, sn: %d, sidx: %d, eidx: %d\n", __func__, n, m, sn, sidx, eidx);**/\
for (i = 0; i < n; i++) /**how many selected minimizers**/\
{\
for (k = 0, mk = -1; k < m; k++) /**how many minimizers in total**/\
{\
if((int32_t)(ma[k].rid)<min_freq) continue;\
ks = ma[k].pos + 1 - ma[k].span; t = -1;\
if(i > 0){\
for (t = k-1; t >= 0 && (ma[t].pos >= ks||(int32_t)(ma[t].rid)<min_freq); t--);\
}\
ix = (i <= 0?0:(t<0?0xffffffff:(GMC(mmt, i-1,t,m)&0xffffffff)));\
if(ix < 0xffffffff) ix += (ma[k].rid);\
kx = (mk < 0?0xffffffff:(GMC(mmt, i, mk,m)&0xffffffff));\
ks = MIN(ix, kx);\
/**fprintf(stderr, "ks: %lu, i: %d (n-%d), k: %d (m-%d), ix: %lu, kx: %lu, t: %d, mk: %d\n", ks, i, n, k, m, ix, kx, t, mk);**/\
if((ks&0xffffffff) == 0xffffffff) ks |= ((uint64_t)0xffffffff)<<32;\
else if(ks == ix) ks |= (uint64_t)(i>0?(i-1)*m+t:0xffffffff)<<32;\
else if(ks == kx) ks |= (uint64_t)(mk>=0?i*m+mk:0xffffffff)<<32;\
GMC(mmt, i,k,m) = ks;\
mk = k;\
}\
}\
/**fprintf(stderr, "[M::%s::] ==> ++n: %d, m: %d, sn: %d, sidx: %d, eidx: %d\n", __func__, n, m, sn, sidx, eidx);**/\
ks = (n-1)*m + mk; ix = (uint64_t)-1; kx = 0;\
while (ks != 0xffffffff)\
{\
i = ks/m; k = ks%m;\
ks = mmt[ks]>>32;\
/**fprintf(stderr, "i: %d, k: %d, ks: %lu\n", i, k, ks);**/\
if(ks == 0xffffffff || (int32_t)(ks/m) == (i-1)){\
mm->a[sidx+k] = 1;\
ix = MIN((uint64_t)k, ix); kx = MAX((uint64_t)k, kx);\
}\
}\
/**debug_refine(ma, mmt, sn, n, m, (n-1)*m + mk);**/\
if(rsi) (*rsi) = ix + sidx;\
if(rei) (*rei) = kx + sidx;\
}\
void sf##_refine_sketch(VType *p, ha_pt_t *pt, int32_t rlen, int32_t dp_min_len, float er, int32_t min_freq, st_mt_t *mt, void *km)\
{\
/**fprintf(stderr, "[M::%s::] ==> #########10#########, rlen: %d\n", __func__, rlen);**/\
int32_t i, n = p->n, bd, len = MIN(rlen, dp_min_len), sublen, cnt, ei, li, ri;\
int32_t sn = len*er + 1;\
kv_resize_km(km, uint64_t, *mt, (int64_t)p->n);\
mt->n = p->n; memset(mt->a, 0, sizeof(uint64_t)*p->n);\
for (i = 0; i < n; i++) p->a[i].rid = ha_pt_cnt(pt, p->a[i].x);\
for (i = cnt = 0, bd = -1, ei = -1; i < n; i++){\
if((int32_t)(p->a[i].rid)<min_freq) continue;\
sublen = p->a[i].pos + 1;\
if(sublen > len) break;\
else ei = i;\
if((int32_t)(p->a[i].pos + 1 - p->a[i].span) > bd){\
bd = p->a[i].pos;\
cnt++;\
}\
}\
/**fprintf(stderr, "[M::%s::] ==> +cnt: %d, sn: %d, ei: %d, n: %d\n", __func__, cnt, sn, ei, n);**/\
if(cnt >= sn) sf##_refine_select(p, 0, ei, sn, min_freq, mt, NULL, &li, km);\
else{\
li = i-1;\
for (i = 0; i <= li; i++) mt->a[i] = 1;\
}\
if(len < rlen){\
for (i = n-1, cnt = 0, bd = rlen+1, ei = -1; i >= 0; i--){\
if((int32_t)(p->a[i].rid)<min_freq) continue;\
sublen = rlen - (p->a[i].pos + 1 - p->a[i].span);\
if(sublen > len) break;\
else ei = i;\
if((int32_t)(p->a[i].pos) < bd){\
bd = p->a[i].pos + 1 - p->a[i].span;\
cnt++;\
}\
}\
/**fprintf(stderr, "[M::%s::] ==> -cnt: %d, sn: %d, ei: %d, n: %d\n", __func__, cnt, sn, ei, n);**/\
if(cnt >= sn) sf##_refine_select(p, ei, n-1, sn, min_freq, mt, &ri, NULL, km);\
else {\
ri = i+1;\
for (i = ri; i <= n-1; i++) mt->a[i] = 1;\
}\
/**fprintf(stderr, "[M::%s::] ==> --cnt: %d, sn: %d, ei: %d, n: %d\n", __func__, cnt, sn, ei, n);**/\
if(ri - li >= 2){\
li++; ri--;\
sn = (p->a[ri].pos - p->a[li].pos + p->a[li].span)*er + 1;\
for (i = li, cnt = 0, bd = -1; i <= ri; i++){\
if((int32_t)(p->a[i].rid)<min_freq) continue;\
if((int32_t)(p->a[i].pos + 1 - p->a[i].span) > bd){\
bd = p->a[i].pos;\
cnt++;\
if(cnt >= sn) break;\
}\
}\
if(cnt >= sn) sf##_refine_select(p, li, ri, sn, min_freq, mt, NULL, NULL, km);\
else for (i = li; i <= ri; i++) mt->a[i] = 1;\
}\
}\
/**fprintf(stderr, "[M::%s::] ==> #########20#########, p->n: %u, n: %d\n", __func__, p->n, n);**/\
for (i = sn = 0; i < n; i++){\
if(mt->a[i]){\
p->a[sn] = p->a[i];\
sn++;\
}\
}\
/**if(p->n != sn) fprintf(stderr, "[M::%s::] ==> #########21#########, p->n: %u, sn: %d\n", __func__, p->n, sn);**/\
p->n = sn;\
}\
/**\
* Find symmetric (w,k)-minimizers on a DNA sequence\
*\
* @param str DNA sequence\
* @param len length of $str\
* @param w find a minimizer for every $w consecutive k-mers\
* @param k k-mer size\
* @param rid reference ID; will be copied to the output $p array\
* @param is_hpc homopolymer-compressed or not\
* @param p minimizers\
*/\
void sf##_ha_sketch(const char *str, int len, int w, int k, uint32_t rid, int is_hpc, VType *p, const void *hf, int sample_dist, kvec_t_u8_warp* k_flag, kvec_t_u64_warp* dbg_ct, ha_pt_t *pt, int min_freq, int32_t dp_min_len, float dp_e, st_mt_t *mt, int32_t ws, int32_t is_unique, void *km)\
{ /**in default, w = 51, k = 51, is_hpc = 1**/\
extern void *ha_ct_table;\
static const HType dummy = { UINT64_MAX, (((uint64_t)1)<<RidBits) - 1, 0, 0, 0};\
uint64_t shift1 = k - 1, mask = (1ULL<<k) - 1, kmer[4] = {0,0,0,0};\
int i, j, l, tl = 0, buf_pos, min_pos, kmer_span = 0;\
HType buf[256], min = dummy;\
uint32_t buf_p[256], min_s = (uint32_t)-1;\
tiny_queue_t tq;\
assert(len > 0 && (int64_t)(len) < (int64_t)((((uint64_t)1)<<PosBits)) && (int64_t)(rid) < (int64_t)((((uint64_t)1)<<RidBits)) && (w > 0 && w < 256) && (k > 0 && k <= 63));\
if (dbg_ct != NULL) dbg_ct->a.n = 0;\
if (k_flag != NULL) {\
kv_resize_km(km, uint8_t, k_flag->a, (uint64_t)len);\
k_flag->a.n = len;\
memset(k_flag->a.a, 0, k_flag->a.n);\
}\
memset(buf, 0xff, w * sizeof(HType));\
memset(&tq, 0, sizeof(tiny_queue_t));\
/**len/w is the evaluated minimizer numbers**/\
kv_resize_km(km, HType, *p, p->n + len/w);\
kv_resize_km(km, uint64_t, *mt, (int64_t)p->m); mt->n = p->n;\
for (i = l = tl = buf_pos = min_pos = 0; i < len; ++i) {\
int c = seq_nt4_table[(uint8_t)str[i]];\
HType info = dummy;\
if (c < 4) { /**not an ambiguous base**/\
int z;\
if (is_hpc) {\
int skip_len = 1;\
if (i + 1 < len && seq_nt4_table[(uint8_t)str[i + 1]] == c) {\
for (skip_len = 2; i + skip_len < len; ++skip_len)\
if (seq_nt4_table[(uint8_t)str[i + skip_len]] != c)\
break;\
i += skip_len - 1; /**put $i at the end of the current homopolymer run**/\
}\
tq_push(&tq, skip_len);\
kmer_span += skip_len;\
/**how many bases that are covered by this HPC k-mer\
kmer_span includes at most k HPC elements**/\
if (tq.count > k) kmer_span -= tq_shift(&tq);\
} else kmer_span = l + 1 < k? l + 1 : k;\
/**kmer_span should be used for HPC k-mer\
non-HPC k-mer, kmer_span should be k\
kmer_span is used to calculate anchor pos on reverse complementary strand**/\
if (k_flag != NULL) k_flag->a.a[i] = 1;/**lable all useful base, which are not ignored by HPC**/\
kmer[0] = (kmer[0] << 1 | (c&1)) & mask;/**forward k-mer**/\
kmer[1] = (kmer[1] << 1 | (c>>1)) & mask;\
kmer[2] = kmer[2] >> 1 | (uint64_t)(1 - (c&1)) << shift1; /**reverse k-mer**/\
kmer[3] = kmer[3] >> 1 | (uint64_t)(1 - (c>>1)) << shift1;\
if (kmer[1] == kmer[3]) continue; /** skip "symmetric k-mers" as we don't know it strand**/\
z = kmer[1] < kmer[3]? 0 : 1; /** strand**/\
++l; tl++;\
if (l >= k && kmer_span < 256) {\
uint64_t y;\
int32_t cnt, filtered;\
y = yak_hash64_64(kmer[z<<1|0]) + yak_hash64_64(kmer[z<<1|1]);\
cnt = hf? ha_ft_cnt(hf, y) : 0;\
filtered = (cnt >= 1<<28);\
if(is_unique && (!filtered)) {\
filtered = (cnt == 0);\
cnt = (cnt == 1? 0:cnt);\
}\
if (dbg_ct != NULL) kv_push_km(km, uint64_t, dbg_ct->a, ((((uint64_t)(query_ct_index(ha_ct_table, y))<<1)|filtered)<<32)|(uint64_t)(i));\
if (!filtered) info.x = y, info.rid = cnt, info.pos = i, info.rev = z, info.span = kmer_span; /** initially ha_mz1_t::rid keeps the k-mer count**/\
if (k_flag != NULL) k_flag->a.a[i]++;\
if (k_flag != NULL && filtered > 0) k_flag->a.a[i]++;\
}\
} else l = 0, tq.count = tq.front = 0, kmer_span = 0;\
buf[buf_pos] = info; /**need to do this here as appropriate buf_pos and buf[buf_pos] are needed below**/\
buf_p[buf_pos] = l;\
if (l == w + k - 1 && min.x != UINT64_MAX) { /**special case for the first window - because identical k-mers are not stored yet**/\
for (j = buf_pos + 1; j < w; ++j){\
if (sf##_mzcmp(&min, &buf[j]) == 0 && buf[j].pos != min.pos){\
kv_push_km(km, HType, *p, buf[j]); kv_push_km(km, uint64_t, *mt, buf_p[j]);\
}\
}\
for (j = 0; j < buf_pos; ++j){\
if (sf##_mzcmp(&min, &buf[j]) == 0 && buf[j].pos != min.pos){\
kv_push_km(km, HType, *p, buf[j]); kv_push_km(km, uint64_t, *mt, buf_p[j]);\
}\
}\
}\
/**\
* There are three cases:\
* 1. info.x <= min.x, means info is a new minimizer\
* 2. info.x > min.x, info is not a new minimizer\
* (1) buf_pos != min_pos, do nothing\
* (2) buf_pos == min_pos, means current minimizer has moved outside the window\
* **/\
/**three cases: 1.**/\
if (sf##_mzcmp(&min, &info) >= 0) { /**a new minimum; then write the old min**/\
if (l >= w + k && min.x != UINT64_MAX){\
kv_push_km(km, HType, *p, min); kv_push_km(km, uint64_t, *mt, min_s);\
}\
min = info, min_pos = buf_pos, min_s = buf_p[buf_pos];\
} else if (buf_pos == min_pos) { /**old min has moved outside the window**/\
if (l >= w + k - 1 && min.x != UINT64_MAX){\
kv_push_km(km, HType, *p, min); kv_push_km(km, uint64_t, *mt, min_s);\
}\
/**buf_pos == min_pos, means current minimizer has moved outside the window\
so for now we need to find a new minimizer at the current window (w k-mers)**/\
for (j = buf_pos + 1, min = dummy; j < w; ++j) /**the two loops are necessary when there are identical k-mers**/\
if (sf##_mzcmp(&min, &buf[j]) >= 0) min = buf[j], min_pos = j, min_s = buf_p[j]; /** >= is important s.t. min is always the closest k-mer**/\
for (j = 0; j <= buf_pos; ++j)\
if (sf##_mzcmp(&min, &buf[j]) >= 0) min = buf[j], min_pos = j, min_s = buf_p[j];\
if (l >= w + k - 1 && min.x != UINT64_MAX) { /**write identical k-mers**/\
for (j = buf_pos + 1; j < w; ++j) /**these two loops make sure the output is sorted**/\
if (sf##_mzcmp(&min, &buf[j]) == 0 && min.pos != buf[j].pos){\
kv_push_km(km, HType, *p, buf[j]); kv_push_km(km, uint64_t, *mt, buf_p[j]);\
}\
for (j = 0; j <= buf_pos; ++j)\
if (sf##_mzcmp(&min, &buf[j]) == 0 && min.pos != buf[j].pos){\
kv_push_km(km, HType, *p, buf[j]); kv_push_km(km, uint64_t, *mt, buf_p[j]);\
}\
}\
}\
if (++buf_pos == w) buf_pos = 0;\
}\
if (min.x != UINT64_MAX){\
kv_push_km(km, HType, *p, min); kv_push_km(km, uint64_t, *mt, min_s);\
}\
/**debug_pl(str, len, w, k, is_hpc, p, hf, mt);**/\
if (sample_dist > w) sf##_select_mz_h(p, mt, len, sample_dist, ws, k, tl);\
if (dp_min_len > 0 && pt && mt) sf##_refine_sketch(p, pt, len, dp_min_len, dp_e, min_freq, mt, km);\
for (i = 0; i < (int)p->n; ++i) /**populate .rid as this was keeping counts**/\
p->a[i].rid = rid;\
}
HA_SC_INIT(mz1, ha_mz1_t, ha_mz1_v, 28, 27)
HA_SC_INIT(mz2, ha_mzl_t, ha_mzl_v, 31, 32)