forked from anguyen8/generative-attribution-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformal_MP_single_image.py
349 lines (272 loc) · 13.1 KB
/
formal_MP_single_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import cv2
import sys
import time
import scipy
import torch
import argparse
import numpy as np
import torch.optim
from formal_utils import *
from skimage.transform import resize
from PIL import ImageFilter, Image
use_cuda = torch.cuda.is_available()
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def numpy_to_torch(img, requires_grad=True):
if len(img.shape) < 3:
output = np.float32([img])
else:
output = np.transpose(img, (2, 0, 1))
output = torch.from_numpy(output)
if use_cuda:
output = output.to('cuda') # cuda()
output.unsqueeze_(0)
output.requires_grad = requires_grad
return output
def create_blurred_circular_mask(mask_shape, radius, center=None, sigma=10):
assert (len(mask_shape) == 2)
if center is None:
x_center = int(mask_shape[1] / float(2))
y_center = int(mask_shape[0] / float(2))
center = (x_center, y_center)
y, x = np.ogrid[-y_center:mask_shape[0] - y_center, -x_center:mask_shape[1] - x_center]
mask = x * x + y * y <= radius * radius
grid = np.zeros(mask_shape)
grid[mask] = 1
if sigma is not None:
grid = scipy.ndimage.filters.gaussian_filter(grid, sigma)
return grid
def create_blurred_circular_mask_pyramid(mask_shape, radii, sigma=10):
assert (len(mask_shape) == 2)
num_masks = len(radii)
masks = np.zeros((num_masks, 3, mask_shape[0], mask_shape[1]))
for i in range(num_masks):
masks[i, :, :, :] = create_blurred_circular_mask(mask_shape, radii[i], sigma=sigma)
return masks
def test_circular_masks(args, model, inpaint_model, o_img, upsample, gt_category, radii=np.arange(0, 175, 5),
thres=1e-2):
masks = create_blurred_circular_mask_pyramid((args.size, args.size), radii)
masks = 1 - masks
u_mask = upsample(torch.from_numpy(masks)).float().to('cuda')
num_masks = len(radii)
img = preprocess_image(np.float32(o_img) / 255, size)
gradient = np.zeros((1, 1000))
gradient[0][gt_category] = 1
scores = np.zeros(num_masks)
batch_masked_img = []
for i in range(num_masks):
if args.algo == 'MP':
null_img = preprocess_image(get_blurred_img(np.float32(o_img)), args.size)
masked_img = img.mul(u_mask[i]) + null_img.mul(1 - u_mask[i])
elif args.algo == 'MPG':
# Use inpainted image for optimization
temp_inpaint_img, _ = inpaint_model.generate_background(img, u_mask[i].unsqueeze(0))
if args.perturb_binary:
thresh = max(0.5, args.thresh * (torch.max(u_mask[i]).cpu().item() + torch.min(
u_mask[i]).cpu().item()))
u_mask[i].data = torch.where(u_mask[i].data > thresh,
torch.ones_like(u_mask[i].data),
torch.zeros_like(u_mask[i].data))
masked_img = img.mul(u_mask[i]) + temp_inpaint_img.mul(1 - u_mask[i])
else:
print('Invalid heatmap style!!')
exit(0)
outputs = torch.nn.Softmax(dim=1)(model(masked_img))
scores[i] = outputs[0, gt_category].cpu().detach()
batch_masked_img.append(masked_img)
img_output = torch.nn.Softmax(dim=1)(model(img)).cpu().detach()
orig_score = img_output[0, gt_category]
percs = (scores - scores[-1]) / float(orig_score - scores[-1])
try:
first_i = np.where(percs < thres)[0][0]
except:
first_i = -1
return radii[first_i]
def get_blurred_img(img, radius=10):
img = Image.fromarray(np.uint8(img))
blurred_img = img.filter(ImageFilter.GaussianBlur(radius))
return np.array(blurred_img) / float(255)
if __name__ == '__main__':
# Hyper parameters.
parser = argparse.ArgumentParser(description='Processing Meaningful Perturbation data')
parser.add_argument('--img_path', type=str,
default='/home/chirag/ILSVRC2012_img_val_bb/ILSVRC2012_img_val/',
help='filepath for the example image')
parser.add_argument('--algo', type=str,
default='MP', help='MP|MPG')
parser.add_argument('--mask_init', type=str,
default='random', help='random|circular')
parser.add_argument('--perturb_binary', type=int,
default=0,
help='flag for using binary mask just for perturbation')
parser.add_argument('--learning_rate', type=float,
default=0.1,
help='flag for using binary mask just for perturbation')
parser.add_argument('--size', type=int,
default=224, help='mask size to be optimized')
parser.add_argument('--true_class', type=int,
default=565,
help='target class of the image you want to explain')
parser.add_argument('--num_iter', type=int,
default=300, help='enter number of optimization iterations')
parser.add_argument('--jitter', type=int,
default=4, help='jitter')
parser.add_argument('--l1_coeff', type=float,
default=1e-4, help='L1 coefficient regularizer')
parser.add_argument('--tv_coeff', type=float,
default=1e-2, help='TV coefficient regularizer')
parser.add_argument('--thresh', type=float,
default=0.5, help='threshold for binarizing mask')
parser.add_argument('--dataset', type=str,
default='imagenet',
help='dataset to run on imagenet | places365')
parser.add_argument('--save_path', type=str,
default='./',
help='filepath for the example image')
parser.add_argument('--weight_file', type=str,
default='/home/chirag/gpu3_codes/generative_inpainting_FIDO/model_logs/release_imagenet_256/',
help='path for the weight files of the inpainter model for imagenet | places365')
args = parser.parse_args()
# PyTorch random seed
torch.manual_seed(0)
tv_beta = 3
learning_rate = args.learning_rate
max_iterations = args.num_iter
l1_coeff = args.l1_coeff
tv_coeff = args.tv_coeff
size = args.size
if args.dataset == 'imagenet':
model = load_model(arch_name='resnet50')
# load the class label
label_map = load_imagenet_label_map()
elif args.dataset == 'places365':
model = load_model_places365(arch_name='resnet50')
# load the class label
label_map = load_class_label()
else:
print('Invalid datasest!!')
exit(0)
model = torch.nn.DataParallel(model).to('cuda')
model.eval()
for p in model.parameters():
p.requires_grad = False
if args.algo == 'MPG':
# Tensorflow CA-inpainter from FIDO
sys.path.insert(0, './generative_inpainting')
from CAInpainter import CAInpainter
inpaint_model = CAInpainter(1, checkpoint_dir=args.weight_file)
if use_cuda:
upsample = torch.nn.UpsamplingNearest2d(size=(size, size)).to('cuda')
else:
upsample = torch.nn.UpsamplingNearest2d(size=(size, size))
init_time = time.time()
# Read image
original_img = cv2.imread(args.img_path, 1)
shape = original_img.shape
img = np.float32(original_img) / 255
gt_category = args.true_class
# define jitter function
jitter = args.jitter
# Path to the output folder
save_path = os.path.join(args.save_path, '{}'.format(args.algo), '{}'.format(args.dataset))
mkdir_p(os.path.join(save_path))
# Compute original output
org_softmax = torch.nn.Softmax(dim=1)(model(preprocess_image(img, size)))
eval0 = org_softmax.data[0, gt_category]
pill_transf = get_pil_transform()
o_img_path = os.path.join(save_path, 'real_{}_{:.3f}_image.jpg'
.format(label_map[gt_category].split(',')[0].split(' ')[0].split('-')[0], eval0))
cv2.imwrite(os.path.abspath(o_img_path), cv2.cvtColor(np.array(pill_transf(get_image(args.img_path))), cv2.COLOR_BGR2RGB))
# Convert to torch variables
img = preprocess_image(img, size + jitter)
if use_cuda:
img = img.to('cuda')
# Modified
if args.mask_init == 'random':
np.random.seed(seed=0)
mask = np.random.rand(28, 28)
mask = numpy_to_torch(mask)
elif args.mask_init == 'circular':
# CAFFE mask_init
if args.algo == 'MP':
mask_radius = test_circular_masks(args, model, model, original_img, upsample, gt_category)
elif args.algo == 'MPG':
mask_radius = test_circular_masks(args, model, inpaint_model, original_img, upsample, gt_category)
mask = 1 - create_blurred_circular_mask((size, size), mask_radius, center=None, sigma=10)
mask = resize(mask.astype(float), (size, size))
mask = numpy_to_torch(mask)
else:
print('Invalid mask init!!')
exit(0)
if args.algo == 'MP':
null_img = preprocess_image(get_blurred_img(np.float32(original_img), radius=10), size + jitter)
optimizer = torch.optim.Adam([mask], lr=learning_rate)
for i in range(max_iterations):
if jitter != 0:
j1 = np.random.randint(jitter)
j2 = np.random.randint(jitter)
else:
j1 = 0
j2 = 0
upsampled_mask = upsample(mask)
# The single channel mask is used with an RGB image,
# so the mask is duplicated to have 3 channel,
upsampled_mask = upsampled_mask.expand(1, 3, upsampled_mask.size(2), upsampled_mask.size(3))
if args.algo == 'MPG':
# Tensorflow CA-inpainter
inpaint_img, _ = inpaint_model.generate_background(img[:, :, j1:(size + j1), j2:(size + j2)],
upsampled_mask)
if args.perturb_binary:
thresh = max(0.5, args.thresh * (torch.max(upsampled_mask).cpu().item() + torch.min(
upsampled_mask).cpu().item()))
upsampled_mask.data = torch.where(upsampled_mask.data > thresh,
torch.ones_like(upsampled_mask.data),
torch.zeros_like(upsampled_mask.data))
perturbated_input = img[:, :, j1:(size + j1), j2:(size + j2)].mul(upsampled_mask) + \
inpaint_img.mul(1 - upsampled_mask)
else:
perturbated_input = img[:, :, j1:(size + j1), j2:(size + j2)].mul(upsampled_mask) + \
inpaint_img.mul(1 - upsampled_mask)
elif args.algo == 'MP':
if args.perturb_binary:
thresh = max(0.5, args.thresh * (torch.max(upsampled_mask).cpu().item() + torch.min(
upsampled_mask).cpu().item()))
upsampled_mask.data = torch.where(upsampled_mask.data > thresh,
torch.ones_like(upsampled_mask.data),
torch.zeros_like(upsampled_mask.data))
perturbated_input = img[:, :, j1:(size + j1), j2:(size + j2)].mul(upsampled_mask) + \
null_img[:, :, j1:(size + j1), j2:(size + j2)].mul(
1 - upsampled_mask)
else:
perturbated_input = img[:, :, j1:(size + j1), j2:(size + j2)].mul(upsampled_mask) + \
null_img[:, :, j1:(size + j1), j2:(size + j2)].mul(
1 - upsampled_mask)
else:
print('Invalid heatmap style!!')
exit(0)
optimizer.zero_grad()
outputs = torch.nn.Softmax(dim=1)(model(perturbated_input))
loss = l1_coeff * torch.sum(torch.abs(1 - mask)) + tv_coeff * tv_norm(mask, tv_beta) + \
outputs[0, gt_category]
loss.backward()
optimizer.step()
mask.data.clamp_(0, 1)
# Create save_path for storing intermediate steps
path = os.path.join(save_path, 'intermediate_steps')
mkdir_p(path)
# Save intermediate steps
amax, aind = outputs.max(dim=1)
gt_val = outputs.data[:, gt_category]
temp_intermediate = np.uint8(
255 * unnormalize(
np.moveaxis(perturbated_input[0, :].cpu().detach().numpy().transpose(), 0, 1)))
cv2.imwrite(
os.path.abspath(os.path.join(path, 'intermediate_{:05d}_{}_{:.3f}_{}_{:.3f}.jpg'
.format(i, label_map[aind.item()].split(',')[0].split(' ')[0].split('-')[0],
amax.item(), label_map[gt_category].split(',')[0].split(' ')[0].split('-')[0],
gt_val.item()))), cv2.cvtColor(temp_intermediate, cv2.COLOR_BGR2RGB))
np.save(os.path.abspath(os.path.join(save_path, "mask_{}.npy".format(args.algo))),
1 - mask.cpu().detach().numpy()[0, 0, :])
# print('Time taken: {:.3f}'.format(time.time() - init_time))