-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnoisyNetLayers.py
142 lines (115 loc) · 5.93 KB
/
noisyNetLayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from keras import backend as K
from keras.layers import Dense
from keras.layers.convolutional import Conv2D
from keras.engine.base_layer import InputSpec
from keras import initializers
# Eigene Implementierung einer NoisyDense Layer sowie einer NoisyConv2D Layer, welche modifizierte Versionen der
# entsprechenden Keras-Layers sind, deren Implementierung als Grundlage benutzt wurde.
class NoisyDense(Dense):
def __init__(self, units, **kwargs):
self.output_dim = units
super(NoisyDense, self).__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
self.input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(self.input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=None,
constraint=None)
# Zweiter Kernel (trainable weights) für Steuerung des Zufalls.
self.kernel_sigma = self.add_weight(shape=(self.input_dim, self.units),
initializer=initializers.Constant(0.017),
name='sigma_kernel',
regularizer=None,
constraint=None)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=None,
constraint=None)
# trainable, Steuerung des Zufalls des Bias.
self.bias_sigma = self.add_weight(shape=(self.units,),
initializer=initializers.Constant(0.017),
name='bias_sigma',
regularizer=None,
constraint=None)
else:
self.bias = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: self.input_dim})
self.built = True
def call(self, inputs):
# Erzeugen der Matrix mit Zufallszahlen (bei jedem Aufruf neu erzeugt) - Vektor-Version
# (siehe Noisy Nets Paper) wäre effizienter.
self.kernel_epsilon = K.random_normal(shape=(self.input_dim, self.units))
w = self.kernel + K.tf.multiply(self.kernel_sigma, self.kernel_epsilon)
output = K.dot(inputs, w)
if self.use_bias:
# Erzeugung Zufallsvektor für Bias-Zufall.
self.bias_epsilon = K.random_normal(shape=(self.units,))
b = self.bias + K.tf.multiply(self.bias_sigma, self.bias_epsilon)
output = output + b
if self.activation is not None:
output = self.activation(output)
return output
class NoisyConv2D(Conv2D):
# Prinzip Identisch zur Dense-Layer, lediglich hat der (Filter-) Kernel sowie der Output eine Dimension mehr.
def build(self, input_shape):
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
self.input_dim = input_shape[channel_axis]
self.kernel_shape = self.kernel_size + (self.input_dim, self.filters)
self.kernel = self.add_weight(shape=self.kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.kernel_sigma = self.add_weight(shape=self.kernel_shape,
initializer=initializers.Constant(0.017),
name='kernel_sigma',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.bias_sigma = self.add_weight(shape=(self.filters,),
initializer=initializers.Constant(0.017),
name='bias_sigma',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = InputSpec(ndim=self.rank + 2,
axes={channel_axis: self.input_dim})
self.built = True
def call(self, inputs):
# add noise to kernel
self.kernel_epsilon = K.random_normal(shape=self.kernel_shape)
w = self.kernel + K.tf.multiply(self.kernel_sigma, self.kernel_epsilon)
# do conv op
outputs = K.conv2d(
inputs,
w,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.use_bias:
self.bias_epsilon = K.random_normal(shape=(self.filters,))
b = self.bias + K.tf.multiply(self.bias_sigma, self.bias_epsilon)
outputs = K.bias_add(
outputs,
b,
data_format=self.data_format)
if self.activation is not None:
return self.activation(outputs)
return outputs