-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_AREL.py
233 lines (196 loc) · 9.41 KB
/
train_AREL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import os
import time
import sys
import logging
import opts
from dataset import VISTDataset
import models
from log_utils import Logger
import misc.utils as utils
from eval_utils import Evaluator
import criterion
from criterion import to_contiguous
from misc.yellowfin import YFOptimizer
from train import setup_optimizer
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
class Flag:
def __init__(self, D_iters, G_iters, always=None):
self.D_iters = D_iters
self.G_iters = G_iters
self.flag = "Disc"
self.iters = self.D_iters
self.curr = 0
self.always = always
def inc(self):
self.curr += 1
if self.curr >= self.iters and self.always is None:
if self.flag == "Disc":
self.flag = "Gen"
self.iters = self.G_iters
elif self.flag == "Gen":
self.flag = "Disc"
self.iters = self.D_iters
self.curr = 0
def train(opt):
logger = Logger(opt)
flag = Flag(D_iters=opt.D_iter, G_iters=opt.G_iter, always=opt.always)
################### set up dataset and dataloader ########################
dataset = VISTDataset(opt)
opt.vocab_size = dataset.get_vocab_size()
opt.seq_length = dataset.get_story_length()
dataset.set_option(data_type={'whole_story': False, 'split_story': True, 'caption': False})
dataset.train()
train_loader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=opt.shuffle, num_workers=opt.workers)
dataset.val()
val_loader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers)
##################### set up model, criterion and optimizer ######
bad_valid = 0
# set up evaluator
evaluator = Evaluator(opt, 'val')
# set up criterion
crit = criterion.LanguageModelCriterion()
rl_crit = criterion.ReinforceCriterion(opt, dataset)
# set up model
model = models.setup(opt)
model.cuda()
disc_opt = copy.copy(opt)
disc_opt.model = 'RewardModel'
disc = models.setup(disc_opt)
if os.path.exists(os.path.join(logger.log_dir, 'disc-model.pth')):
logging.info("loading pretrained RewardModel")
disc.load_state_dict(torch.load(os.path.join(logger.log_dir, 'disc-model.pth')))
disc.cuda()
# set up optimizer
optimizer = setup_optimizer(opt, model)
disc_optimizer = setup_optimizer(opt, disc)
dataset.train()
model.train()
disc.train()
############################## training ##################################
for epoch in range(logger.epoch_start, opt.max_epochs):
# Assign the scheduled sampling prob
start = time.time()
for iter, batch in enumerate(train_loader):
logger.iteration += 1
torch.cuda.synchronize()
feature_fc = Variable(batch['feature_fc']).cuda()
target = Variable(batch['split_story']).cuda()
index = batch['index']
optimizer.zero_grad()
disc_optimizer.zero_grad()
if flag.flag == "Disc":
model.eval()
disc.train()
if opt.decoding_method_DISC == 'sample':
seq, seq_log_probs, baseline = model.sample(feature_fc, sample_max=False, rl_training=True,
pad=True)
elif opt.decoding_method_DISC == 'greedy':
seq, seq_log_probs, baseline = model.sample(feature_fc, sample_max=True, rl_training=True,
pad=True)
else:
model.train()
disc.eval()
seq, seq_log_probs, baseline = model.sample(feature_fc, sample_max=False, rl_training=True, pad=True)
seq = Variable(seq).cuda()
mask = (seq > 0).float()
mask = to_contiguous(
torch.cat([Variable(mask.data.new(mask.size(0), mask.size(1), 1).fill_(1)), mask[:, :, :-1]], 2))
normed_seq_log_probs = (seq_log_probs * mask).sum(-1) / mask.sum(-1)
gen_score = disc(seq.view(-1, seq.size(2)), feature_fc.view(-1, feature_fc.size(2)))
if flag.flag == "Disc":
gt_score = disc(target.view(-1, target.size(2)), feature_fc.view(-1, feature_fc.size(2)))
loss = -torch.sum(gt_score) + torch.sum(gen_score)
avg_pos_score = torch.mean(gt_score)
avg_neg_score = torch.mean(gen_score)
if logger.iteration % 5 == 0:
logging.info("pos reward {} neg reward {}".format(avg_pos_score.data[0], avg_neg_score.data[0]))
print("PREDICTION: ", utils.decode_story(dataset.get_vocab(), seq[:1].data)[0])
print("GROUND TRUTH: ", utils.decode_story(dataset.get_vocab(), target[:1].data)[0])
else:
rewards = Variable(gen_score.data - 0 * normed_seq_log_probs.data)
#with open("/tmp/reward.txt", "a") as f:
# print(" ".join(map(str, rewards.data.cpu().numpy())), file=f)
loss, avg_score = rl_crit(seq.data, seq_log_probs, baseline, index, rewards)
# if logger.iteration % opt.losses_log_every == 0:
avg_pos_score = torch.mean(gen_score)
logging.info(
"average reward: {} average IRL score: {}".format(avg_score.data[0], avg_pos_score.data[0]))
if flag.flag == "Disc":
loss.backward()
nn.utils.clip_grad_norm(disc.parameters(), opt.grad_clip, norm_type=2)
disc_optimizer.step()
else:
tf_loss = crit(model(feature_fc, target), target)
print("rl_loss / tf_loss = ", loss.data[0] / tf_loss.data[0])
loss = opt.rl_weight * loss + (1 - opt.rl_weight) * tf_loss
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), opt.grad_clip, norm_type=2)
optimizer.step()
train_loss = loss.data[0]
torch.cuda.synchronize()
# Write the training loss summary
if logger.iteration % opt.losses_log_every == 0:
logger.log_training(epoch, iter, train_loss, opt.learning_rate, model.ss_prob)
logging.info(
"Epoch {} Train {} - Iter {} / {}, loss = {:.5f}, time used = {:.3f}s".format(epoch, flag.flag,
iter,
len(train_loader),
train_loss,
time.time() - start))
start = time.time()
if logger.iteration % opt.save_checkpoint_every == 0:
if opt.always is None:
# Evaluate on validation dataset and save model for every epoch
val_loss, predictions, metrics = evaluator.eval_story(model, crit, dataset, val_loader, opt)
if opt.metric == 'XE':
score = -val_loss
else:
score = metrics[opt.metric]
logger.log_checkpoint(epoch, val_loss, metrics, predictions, opt, model, dataset, optimizer)
# halve the learning rate if not improving for a long time
if logger.best_val_score > score:
bad_valid += 1
if bad_valid >= 10:
opt.learning_rate = opt.learning_rate / 2.0
logging.info("halve learning rate to {}".format(opt.learning_rate))
checkpoint_path = os.path.join(logger.log_dir, 'model-best.pth')
model.load_state_dict(torch.load(checkpoint_path))
utils.set_lr(optimizer, opt.learning_rate) # set the decayed rate
bad_valid = 0
logging.info("bad valid : {}".format(bad_valid))
else:
logging.info("achieving best {} score: {}".format(opt.metric, score))
bad_valid = 0
else:
torch.save(disc.state_dict(), os.path.join(logger.log_dir, 'disc-model.pth'))
flag.inc()
def test(opt):
logger = Logger(opt)
dataset = VISTDataset(opt)
opt.vocab_size = dataset.get_vocab_size()
opt.seq_length = dataset.get_story_length()
dataset.test()
test_loader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers)
evaluator = Evaluator(opt, 'test')
model = models.setup(opt)
model.cuda()
predictions, metrics = evaluator.test_story(model, dataset, test_loader, opt)
if __name__ == "__main__":
opt = opts.parse_opt()
if opt.option == 'train':
print('Begin training:')
train(opt)
else:
print('Begin testing:')
test(opt)