-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path_region_.tex
2234 lines (1944 loc) · 71.7 KB
/
_region_.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\message{ !name(notebook.tex)}\documentclass[8pt]{report}
%% \usepackage[fleqn]{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsfonts,amsthm,bm}
\usepackage{breqn}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz}
\usepackage[ruled,vlined,linesnumbered,lined,boxed,commentsnumbered]{algorithm2e}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{subcaption}
%% \usepackage{datetime}
\usepackage{multirow}
\usepackage{multicol}
\usepackage{mathrsfs}
\usepackage{fancyhdr}
\usepackage{fancyvrb}
\usepackage{parskip} %turns off paragraph indent
\pagestyle{fancy}
\usetikzlibrary{arrows}
\DeclareMathOperator*{\argmin}{argmin}
\newcommand*{\argminl}{\argmin\limits}
\DeclareMathOperator*{\argmax}{argmax}
\newcommand*{\argmaxl}{\argmax\limits}
\newcommand{\mathleft}{\@fleqntrue\@mathmargin0pt}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\norm}[1]{\|#1\|}
\newcommand{\ppartial}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\set}[1]{\{#1\}}
\setcounter{MaxMatrixCols}{20}
% remove excess vertical space for align* equations
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
\setlength{\abovedisplayshortskip}{0pt}
\setlength{\belowdisplayshortskip}{0pt}
\usepackage{multicol}
\usepackage[tiny]{titlesec}
\SetKwRepeat{Do}{do}{while}
\SetKwFor{While}{while}{}{end while}%
\begin{document}
\message{ !name(notebook.tex) !offset(-3) }
\lhead{Notebook - Convex Optimization}
\rhead{Bill (Yuan) Liu}
\begin{multicols*}{2}
\section{Symbols}
$S^n \equiv$ set of all symmetric matrices\\
$M_+^n \equiv$ set of all positive definite matrices (PD)\\
$S_+^n \equiv$ set of all symmetric positive semidefinite matrices (SPSD)\\
$S_{++}^n \equiv$ set of all symmetric positive definite matrices (SPD)\\
$cl(X) \equiv$ closure of $X$\\
$relint(X) \equiv$ relative interior of $X$\\
$int(X) \equiv$ interior of $X$\\
$[x]^+ \equiv max(x,0)$\\
$I_C(x) = \begin{cases}
0 &, x \in C\\
\infty &, x \not\in C
\end{cases}$\\
$prox_{f,\lambda}(y) = f(x)+\frac{1}{2 \lambda}\norm{x-v}_2^2$\\
$\text{SoftThresholding}_{\lambda}(y) = prox_{\norm{*}_1,\lambda}(y)$
\vfill\null
\columnbreak
\vfill\null
\columnbreak
\section{Preliminary}
Consider $f:\R^n \to \R$\\
Gradient of $f$: $\nabla f(x) = \begin{bmatrix} \partial f / \partial x_i \\ .. \end{bmatrix}$\\
$f(x) = a^Tx \implies \nabla f(x) = a$\\
$f(x) = x^TPx, P=P^T \implies \nabla f(x) = 2Px$\\
$f(x) = x^TPx \implies \nabla f(x) = 2(\frac{P^T+P}{2})x=(P^T+P)x$\\
Taylor expansion approximation:\\
$f(x) \approx f(x_0) + \nabla^T f(x_0)(x-x_0) + o((x-x_0)^2)$\\
$f(x+\delta x) \approx f(x_0) + \nabla^T f(x)\delta x + o((\delta x)^2)$\\
Chain rule:\\
$f: \R \to \R, g: \R \to \R, h(x) = f(g(x))$\\
$\nabla h(x) = g'(f(x)) \nabla f(x)$\\
$g:\R^m \to \R, g(x) = f(Ax+b)$\\
$\nabla g(x) = A^T \nabla f(Ax+b)$\\
2nd derivative:\\
$\nabla^2 f(x)=\begin{bmatrix}
\partial^2 f / \partial x_1 \partial x_1 & ...\\
.. & \partial^2 f / \partial x_n \partial x_n
\end{bmatrix}$\\
$\nabla f(x)=Px+g$\\
$\nabla^2 f(x)=P$\\
Hessian gives the 2nd order approximation:\\
$f(x) \approx f(x_0) + \nabla^T f(x_0)(x-x_0) + \\ \frac{1}{2}(x-x_0)^T \nabla^2 f(x_0) (x-x_0)$\\
Matrices:\\
$A \in \R^{m \times n}$: set of all real matrices\\
inner product: $\sum_i \sum_j x_{ij} y_{ij} = trace(XY^T)=trace(Y^TX)=\sum_{i}(XY)_{ii}$\\
note trace has cyclic property\\
frobenius norm: $\|X\|_F = (\sum_i \sum_j X_{ij}^2)^{\frac{1}{2}}$\\
range: $R(A) = \{Ax: x \in \R^n\}=\sum_i a_i x_i$, where $a_i$ is ith column (column space of A)\\
null space: $N(A) = \{ x : Ax = 0\}$\\
SVD:\\
$A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$\\
U and V are left and right eigenvector matrixes\\
U and V are orthogonal matrixes($BB^T=B^TB=I$)\\
$\Sigma$ is rectangular diagonal matrix of eigenvalues\\
$A_{m \times n}x_{n}$\\
linear transformation: $U \Sigma V^T x$\\
rotation - scaling - rotation
\vfill\null
\columnbreak
PSD matrix:\\
$A\ PSD \iff (\forall x) x^TAx \geq 0 \iff (\forall i) \lambda_i(A) \geq 0$\\
$A\ PSD \implies A^{1/2}$ exists\\
Real symmetric matrices have real eigenvalues:
\begin{align*}
&Av=\lambda v\\
&v^*Av=v^*\lambda v=\lambda \|v\|_2^2\\
&(v^* A v)^*= v^* A^* v = \lambda^* \|v\|_2^2 \implies \lambda = \lambda^*
\end{align*}
Affine sets\\
A set $C \subseteq \R^n$ is affine if $(\forall x_1, x_2 \in C)(\forall \theta \in \R) \implies \theta x_1 +(1-\theta) x_2 \in C$\\
Convex sets\\
A set $C \subseteq \R^n$ is convex if $(\forall x_1,x_2 \in C)(\forall \theta \in \R) 0 \leq \theta \leq 1 \implies \theta x_1 +(1-\theta)x_2 \in C$\\
Operations preserving convex sets:
\begin{itemize}
\item partial sum
\item sum
\item coordinate projection
\item scaling
\item translation
\item intersection between any convex sets
\end{itemize}
Separating Hyperplanes: if $S,T \subset \R^n$ are convex and disjoint, then $\exists a \neq 0, b$ such that:\\
\begin{align*}
a^Tx \geq b, \forall x \in S\\
a^Tx \leq b, \forall x \in T\\
\end{align*}
Supporting Hyperplane:\\
if $S$ is convex, $\forall x_0 \in \partial S$ (boundary of S), then $\exists a \neq 0$ such that $a^Tx \leq a^Tx_0, \forall x \in S$\\
Convex combination:\\
$\sum_i \theta_i x_i, \forall \theta_i \in \R, \sum_i \theta_i = 1, \theta_i \geq 0$\\
Convex hull:\\
The set of all convex combinations of points in $C$, the hull is convex\\
Hyperplane
\begin{align*}
C=\{x: a^Tx=b\}, a \in \R^n, a \neq 0, b \in \R
\end{align*}
Halfspaces
\begin{align*}
C&=\{x: a^Tx \leq b\}, a \in \R^n, a \neq 0, b \in \R\\
&\text{let } a^Tx_c=b\\
C&=\{x: a^T(x-x_c) \leq 0\}, a \in \R^n, a \neq 0
\end{align*}
Elipse
\begin{align*}
E(x_c,P) = \{ x: (x-x_c)^T P^{-1} (x-x_c) \leq 1 \}, P > 0\\
P=r^2 I \implies \text{ Euclidean Ball }\\
P=Q \begin{bmatrix}
\lambda_1 & ..\\
.. & \lambda_n\\
\end{bmatrix}
Q^T\\
(x-x_c)^T (Q \begin{bmatrix}
\lambda_1 & ..\\
.. & \lambda_n\\
\end{bmatrix}
Q^T)^{-1}(x-x_c) \leq 1\\
\tilde{x}^T \begin{bmatrix}
\frac{1}{\lambda_1} & ..\\
.. & \frac{1}{\lambda_n}\\
\end{bmatrix}
\tilde{x} \leq 1\\
\tilde{x}^T \begin{bmatrix}
\frac{1}{\lambda_1} & ..\\
.. & \frac{1}{\lambda_n}\\
\end{bmatrix}
\tilde{x} = \frac{\tilde{x_1}^2}{\lambda_1}+..+\frac{\tilde{x_n}^2}{\lambda_n}\leq 1\\
\text{volum of elipsoid proportional to } \sqrt{det(P)}=\sqrt{\Pi_i \lambda_i}
\end{align*}
\vfill\null
\columnbreak
\vfill\null
\columnbreak
\section{Problem Types}
\subsection*{LP}
standard, inequality, general forms
\begin{align*}
\min_x c^Tx\ s.t.:\\
Ax = b\\
x \succeq 0
\end{align*}
\begin{align*}
\min_x c^Tx\ s.t.:\\
Ax \preceq b
\end{align*}
\begin{align*}
\min_x c^Tx+d\ s.t.:\\
Gx \preceq h\\
Ax = b
\end{align*}
\subsection*{QP}
\begin{align*}
\min_x \frac{1}{2} x^T P x + q^T x + r\ s.t.:\\
Gx \leq h\\
Ax = b
\end{align*}
\subsection*{QCQP}
\begin{align*}
\min_x \frac{1}{2}x^TP_0x + q_0^Tx + r_0, s.t.:\\
\frac{1}{2}x^TP_ix + q_i^Tx + r_i \leq 0, \forall i\\
Ax=b
\end{align*}
\subsection*{SOCP}
\begin{align*}
\min_x f^T x\ s.t.:\\
\norm{A_ix+b_i}_2 \leq c_i^Tx+d_i, \forall i\\
Fx = g
\end{align*}
\begin{align*}
(\forall i) b_i=0 \implies LP\\
(\forall i) c_i=0 \implies QCQP
\end{align*}
\vfill\null
\columnbreak
\subsection*{GP}
\begin{align*}
\min_x f_0(x)\ s.t.:\\
f_i(x) \leq 1, \forall i\\
h_i(x) = 1, \forall i\\
f_i\ is\ a\ posynomial := \sum_i h_i\\
h_i\ is\ a\ monomial := cx_1^{a_1}x_2^{a_2}.., c>0, a_i \in \R\\
\end{align*}
Use transform of objective and constraint functions:\\
$y_i=log x_i, x_i=e^{y_i}$\\
$\tilde{h_i}$ becomes exponential of affine function\\
$\tilde{f_i} = log(f_i)$ becomes log sum exp (convex)\\
If all constraints and objective are monomials, reduces to LP after transform.
\subsection*{SDP}
general, standard, inequality forms
\begin{align*}
\min_x\ c^Tx\ s.t.:\\
LMI:\ \sum_i^n x_i F_i + G \preceq_K 0\\
Ax=b\\
x\in\R^n\\
F_i,G \in S^m, K\in S_+^m
\end{align*}
\begin{align*}
\min_X\ tr(CX) s.t.:\\
tr(A_iX)=b_i, \forall i\\
X \succeq 0
\end{align*}
\begin{align*}
\min_x\ c^Tx\ s.t.:\\
\sum_i^n x_i A_i \preceq_K B\\
Ax=b\\
B,A_i \in S^m, K\in S_+^m
\end{align*}
concatenating constraints:
\begin{align*}
F^{(i)}(x) = \sum_j x_j F_i^{(i)} + G^{(i)} \preceq 0\\
Gx \preceq h\\
\implies\\
diag(Gx-h, F^{(1)}(x),..,F^{(m)}(x)) \preceq 0\\
\end{align*}
if all matrices are diagonal, reduces to LP
\pagebreak
\section{Convex/Concave Functions}
\begin{itemize}
\item Affine
\item Pointwise supremum of convex functions
\begin{itemize}
\item distance to farthest point in arbitrary set
\item support function of set
\end{itemize}
\item Partial minimization:\\
$g(x,y)\ convex\ in\ x,y, C\ convex \implies\\ min_{y\in C}\ g(x,y)\ convex$
\item shortest distance to a convex set
\item Any type of norm
\item Non-negative weighted sum of convex functions
\item indicator function $I_C(x)$
\end{itemize}
\subsection{log det X, concave}
\begin{align*}
let\ X=Z+tV \succ 0\\
f=log det(Z+tV)\\
f=log det(Z^{-0.5}(I+tZ^{-0.5}VZ^{0.5})Z^{0.5})\\
f=log (det(Z^{-0.5})det(I+tZ^{-0.5}VZ^{0.5})det(Z^{0.5}))\\
f=log (det(Z^{0})det(I+tZ^{-0.5}VZ^{0.5}))\\
f=log det(I+tZ^{-0.5}VZ^{0.5})\\
f=log \Pi_i (1+\lambda_i t)\\
f=\sum_i log(1+\lambda_i t)\\
\frac{\partial f}{\partial t} = \sum_i \frac{\lambda_i}{1+\lambda_i t}\\
\frac{\partial^2 f}{\partial t^2} = \sum_i \frac{-\lambda_i^2}{(1+\lambda_i t)^2} = -\sum_i \frac{\lambda_i^2}{(1+\lambda_i t)^2} \leq 0\\
\nabla^2 f \leq 0 \iff f\ concave\\
\end{align*}
\vfill\null
\columnbreak
\subsection{log $\sum_i exp(x_i)$, convex}
\begin{align*}
\nabla^2 f = \frac{1}{(1^Tz)^2} (1^Tz diag(z) -zz^T)\\
v^T zz^T v = det(v^T zz^T v) = det(vv^T zz^T)\\
v^T zz^T v = \sum_j \sum_i z_j z_i v_j v_i\\
v^T zz^T v = (\sum_j z_j z_j)(\sum_i z_i v_i)\\
v^T zz^T v = (\sum_i z_i v_i)^2\\
use\ Holder's\ Inequality:\\
\|a\|_2^2 \|b\|_2^2 \geq |a^Tb|^2\\
let\ a = z_i^{0.5}, b=v_iz_i^{0.5}\\
1^Tz(\sum_i v_i^2 z_i)-(\sum_i z_i v_i)^2 \geq 0\\
v^T\nabla^2f v = \frac{1}{(1^Tz)^2} \bigg(1^Tz(\sum_i v_i^2 z_i)-(\sum_i z_i v_i)^2\bigg) \geq 0\\
\nabla^2f \geq 0 \iff f\ convex
\end{align*}
\subsection{geometric mean on $R_{++}^n$, concave}
\begin{align*}
f=(\Pi_i x_i)^{\frac{1}{n}}\\
\frac{\partial}{\partial x_i} f = \frac{1}{n}(\Pi_i x_i)^{\frac{1}{n}-1}\Pi_{j\not=i}x_j\\
\frac{\partial^2}{\partial x_i^2} f = \frac{1}{n}(\frac{1}{n}-1)(\Pi_i x_i)^{\frac{1}{n}-2}(\Pi_{j\not=i}x_j)^2\\
\frac{\partial^2}{\partial x_i^2} f = \frac{1}{n}(\frac{1}{n}-1)\frac{(\Pi_i x_i)^{\frac{1}{n}}}{x_i^2}\\
\frac{\partial^2}{\partial x_i x_k} f = \frac{1}{n^2}\frac{(\Pi_i x_i)^{\frac{1}{n}}}{x_i x_k}, i\not=k\\
\frac{\partial^2}{\partial x_i x_k} f = \frac{1}{n^2}\frac{(\Pi_i x_i)^{\frac{1}{n}}}{x_i x_k} -\delta_{ik} \frac{1}{n}\frac{(\Pi_i x_i)^{\frac{1}{n}}}{x_i^2}
\\
v^T \nabla^2 f v = \frac{-(\Pi_i x_i)^{\frac{1}{n}}}{n^2}(n \sum_i \frac{v_i^2}{x_i^2} - (\sum_i \frac{v_i}{x_i})^2)\\\
apply\ Cauchy\ Schwartz\ Inequality:\\
let\ a=\bold{1}, b_i = \frac{v_i}{x_i}\\
\|\bold{1}\|_2^2 (\sum_i \frac{v_i^2}{x_i}) \geq (\sum_i \frac{v_i}{x_i})^2\\
n \sum_i \frac{v_i^2}{x_i^2} - (\sum_i \frac{v_i}{x_i})^2 \geq 0\\
v^T \nabla^2 f v \leq 0 \iff f\ concave
\end{align*}
\subsection{quadratic over linear, convex}
\begin{align*}
f(x,y) = \frac{h(x)}{g(y)}, g(y) \ linear, g(y) \in R_+\\
\nabla^2 f = vv^T \ is\ PSD \iff f\ convex
\end{align*}
\vfill\null
\columnbreak
\section{Composition of functions}
Mnemonic derivation from scalar composite function
\begin{align*}
f=h(g(x))\\
f'=g'(x)h'(g(x))\\
f''=g''(x)h'(g(x)) + (g'(x))^2 h''(g(x))\\
\\
\text{h convex \& non-decreasing, g convex } \implies \text{ f convex}\\
h'' \geq 0, g''(x) \geq 0, h'(g(x)) \geq 0 \implies f'' \geq 0\\
\\
\text{h convex \& non-increasing, g concave } \implies \text{ f convex}\\
h'' \geq 0, g''(x) \leq 0, h'(g(x)) \leq 0 \implies f'' \geq 0\\
\\
\text{h concave \& non-decreasing, g concave } \implies \text{ f concave}\\
h'' \leq 0, g''(x) \leq 0, h'(g(x)) \geq 0 \implies f'' \leq 0\\
\\
\text{h concave \& non-increasing, g convex } \implies \text{ f concave}\\
h'' \leq 0, g''(x) \geq 0, h'(g(x)) \leq 0 \implies f'' \leq 0\\
\end{align*}
\vfill\null
\pagebreak
\section{Convexity Preservation of Sets}
\subsection{Intersection}
\begin{align*}
(\forall \alpha \in A) S_{\alpha}\text{ is convex cone} \implies\\
\cap_{\alpha \in A} S_{\alpha} \text{ is convex cone}
\end{align*}
Any closed convex set can be represented by possibly infinitely many half spaces.\\
\subsection{Affine functions}
let $f(x)=Ax+b, f:\R^n \to \R^m$\\
then if S is a convex set we have:
\begin{itemize}
\item project forward: $f(S) = \{ f(X) : X \in S \}$ is convex
\item project back: $f^{-1}(S) = \{ X : f(X) \in S \}$ is convex
\end{itemize}
Example:
\begin{align*}
C = \{ y : y=Ax+b, \norm{x} \leq 1\}
\end{align*}
$\norm{x} \leq 1$ is convex, $Ax+b$ is affine $\implies$ C is convex\\
Example:
\begin{align*}
C = \{ x : \norm{Ax+b} \leq 1 \}
\end{align*}
$\{y: \norm{y} \leq 1 \}$ is convex $\wedge$ $y$ is an affine function of $x \implies$ C is convex\\
\vfill\null
\pagebreak
\section{Constraint Qualifications}
\subsection{Slater's Constraint Qual.}
Optimal solution is in relative interior: $x^* \in relint(S)$\\
Inequalities $(\forall i)f_i(x)$ convex $\wedge\ f_i(x)<0 \implies$ Slater's constraint satisfied.\\
Inequalities $(\forall i)f_i(x)$ affine $\implies (\forall i)f_i(x) \leq 0 \wedge (\exists i) f_i(x) < 0 \implies$ Slater's constraint satisfied.\\
Achieving Slater's constraint implies 0 duality gap.
\subsection{KKT}
Assumes optimality achieved with 0 duality gap: $\nabla L(x^*,\lambda^*,v^*)=0$
\begin{align*}
&L(x^*,\lambda^*,v^*) = f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) + \sum_i v_i h_i(x^*)\\
&\nabla L(x^*,\lambda^*,v^*) = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i v_i \nabla h_i(x^*)
\end{align*}
We have the constraints:
\begin{align*}
&f_i(x^*) \leq 0\\
&\lambda_i^* \geq 0\\
&h_i(x^*)=0\\
&\lambda_i^* f_i(x^*)=0\\
&\nabla L(x^*,\lambda^*,v^*) = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i v_i \nabla h_i(x^*)
\end{align*}
Primal inequality constraints convex and equality constraints affine and KKT satisfied $\implies$ 0 duality gap with specified points for primal and dual. (sufficient).\\
If Slater's constraint satisfied then the above is sufficient and necessary:\\
Primal inequality constraints convex and equality constraints affine and KKT satisfied $\iff$ 0 duality gap with specified points for primal and dual.\\
\vfill\null
\pagebreak
\section{Definitions}
\subsection{Convex Function}
\begin{align*}
f(\theta x +(1-\theta) y) \leq \theta f(x) + (1-\theta) f(y), \forall \theta = [0,1]\\
\end{align*}
For convenience we sometimes define an extended value function:\\
\begin{align*}
\tilde{f}(x) = \begin{cases}
f(x), & x \in dom(f)\\
\infty, & other\ wise\\
\end{cases}\\
\end{align*}
if $f(x)$ convex, then $\tilde{f}$ is also convex\\
Sublevel set of a function
\begin{align*}
C(\alpha) = \{ x \in dom(f): f(x) \leq \alpha \}
\end{align*}
For convex function, all sublevel sets are convex ($\forall \alpha$). Converse is not true.\\
Quasi-convex function: if its sublevel sets are all convex.\\
Epigraph of functions:\\
$epi(f)=\{(x,t): x \in dom(f), f(x) \leq t\} \in \R^{n+1}, \\f \in \R^n \to \R$.\\
$f$ is convex function $\iff epi(f)$ is convex set\\
\subsection{First order condition}
Suppose f is differentiable and domain of f is convex. Then:\\
f convex $\iff \\ (\forall x,x_0 \in dom(f)) f(x) \geq f(x_0) + \nabla f(x_0)^T(x-x_0)$\\
rough proof:\\
suppose $f(x)$ is convex but $(\exists x, x_0) f(x) < f(x) + \nabla f(x_0)^T(x-x_0)$\\
then this means the function should bend across the tangent line which violates the convexity\\
proof for converse direction:\\
suppose that $(\exists x, x_0) f(x) \geq f(x) + \nabla f(x_0)^T(x-x_0)$\\
to show that $f(x)$ is convex lets take $x,y \in dom(f), z= \theta x + (1-\theta)y$\\
$\theta f(x) + (1-\theta) f(y) \geq f(z) + \nabla f(z)^T(\theta x - \theta z + (1-\theta)y - (1-\theta)z)$\\
$\theta f(x) + (1-\theta) f(y) \geq f(\theta x +(1-\theta)y)$\\
$f(x)$ is convex
\subsection{Second order condition}
Suppose $f$ is twice differentiable and $dom(f)$ is convex, \\
then $f(x)$ is convex $\iff \nabla^2 f(x) \geq 0 $ (PSD, eg: wrt. $S_+^n$)\\
proof for scalar case:\\
suppose that $f(x)$ is convex, then the first-order condition holds\\
for $x,y \in dom(f): f(x) \geq f(y) + f'(y)(x-y)$\\
for $y,x \in dom(f): f(y) \geq f(x) + f'(x)(y-x)$\\
$f'(x)(y-x) \leq f(y)-f(x) \leq f'(y)(y-x)$\\
$f'(x)(y-x) \leq f'(y)(y-x) \implies 0 \leq (y-x)(f'(y)-f'(x))$\\
% $\frac{x}{(y-x)^2} \implies 0 \leq \frac{f;(y)-f'(x)}{(y-x)}$
take $y\to x: 0 \leq f''(x)$\\
$f''(x) \geq \frac{f'(x+\delta x)-f'(x)}{\delta x}$\\
conversely, suppose that $f'(z) \geq 0, \forall z \in dom(f)$, take $x,y \in dom(f)$ WLOG $x < y$\\
$\int_x^y f''(z)(y-z) dz \geq 0$\\
$f''(z) \geq 0, (y-z) \geq 0$\\
$I_1 = \int_x^y f''(z)y dz = y(f'(y)-f'(x))$\\
$I_2 = -\int_x^y zf''(z) dz$\\
$dv=f''(z) dz \implies v = f'(z)$\\
$u=z\implies du = dz$\\
$I_2 = -[z f'(z)]|_x^y + \int_x^y f'(z) dz = -y f'(y) + x f'(x)+f(y)-f(x)$\\
$I_1+I_2=y f'(y)-y f'(x)-y f'(y) + x f'(x) + f(y)-f(x) \geq 0$\\
$\implies f(y) \geq f(x) + f'(x)(y-x)$ first order condition: $x<y$\\
first order condition holds $\implies f(x)$ convex\\
\vfill\null
\columnbreak
\subsection{Inequalities}
$x \preceq_K y \iff y-x \in K$\\
$x$ is a minimum in $S$ wrt. cone $K$:
\begin{align*}
&x \in S: (\forall y \in S)f(y) \succeq_K f(x) \iff f(y)-f(x) \in S\\
&S \subseteq x+K
\end{align*}
$x$ is a minimal in $S$ wrt. cone $K$:
\begin{align*}
&x \in S: (\forall y \in S)f(y) \preceq_K f(x) \implies x = y\\
&x \in S: (\forall y \in S) f(x)-f(y) \in K \implies x = y\\
&(x-K) \cap S = \set{x}
\end{align*}
\subsection{Cone}
\begin{align*}
(\forall x \in C, \forall \theta \geq 0) \theta x \in C
\end{align*}
\subsection{Convex Cone}
Eg: $S^n, S^n_+$ are convex cones\\
convexity check for $S^N_+$:\\
\begin{align*}
x_1 \in S^n_+ \implies v^Tx_1v \geq 0\\
x_2 \in S^n_+ \implies v^Tx_2v \geq 0\\
x=\theta x_1 +(1-\theta)x_2, \theta \in [0,1]\\
v^T(\theta x_1 + (1-\theta)x_2)v \geq 0\\
v^T\theta x_1 v + (1-\theta)v^T x_2 v \implies x \in S^n_+\\
\end{align*}
convexity check for cone:\\
\begin{align*}
x_1 \in S^n_+ \implies \theta x_1 \in S^n_+, \theta \geq 0\\
(\forall v) v^T x v \geq 0 \implies v^T(\theta x) v \geq 0 \implies \text{ cone}
\end{align*}
\subsection{Proper Cone}
Definition:
\begin{itemize}
\item convex
\item closed(contains all limit points)
\item solid(non-empty interior)
\item pointed(contains no line): $x \in K \implies -x \not\in K$
\end{itemize}
Then the proper cone K defines a generalized inequality ($\leq_K$) in $\R^n$
\begin{align*}
x \leq_K y \implies y-x \in K\\
x <_K y \implies y-x \in int(K)
\end{align*}
Example: $K=R^n_+$ (non-negative orthant):
\begin{align*}
n = 2\\
x \leq_{R^2_+} y \implies y-x \in R^2_+
\end{align*}
Cone provides partial ordering using difference of 2 objects.\\
$X \leq_{S^n_+} Y \iff Y-X \in S^n_+ \iff Y-X$ is PSD
\subsection{Norm Cone}
\begin{align*}
K=\set{(x,t) \in \R^{n+1} : \norm{x} \leq t}, x \in \R^n
\end{align*}
\subsection{Dual norm}
$\|z\|_* := \sup_x \{z^T x : \|x\|_p \leq 1\}$\\
Dual of L1-norm:\\
$\|z\|_* := \sup_x \{z^T x : \|x\|_1 \leq 1\}$\\
max $\sum_i z_i x_i$,\\
subject to : $\sum_i \|x_i\| \leq 1$\\
select $x_i$ corresponding to $z_i$ with maximum absolute value\\
equivalent to $\|z\|_* = \|z\|_{\infty}$\\
Dual of L-$\infty$-norm:\\
$\|z\|_* := \sup_x \{z^T x : \|x\|_{\infty} \leq 1\}$\\
max $\sum_i z_i x_i$,\\
subject to : $\|x_i\| \leq 1, \forall i$\\
choose $x_i=1$ if $z_i \geq 0$ and $x_i=-1$ if $z_i < 0$\\
equivalent to $\|z\|_* = \|z\|_1$\\
Dual norm of Lp-norm: Lq-norm where $1/p + 1/q = 1$\\
Properties of Dual Cone:
\begin{itemize}
\item $K^*$ closed and convex
\item $K_1 \subseteq K_2 \implies K_2^* \subseteq K_1^*$
\item $K$ has non-empty interior $\implies K^*$ pointed
\item $cl(K)$ pointed $\implies K^*$ has non-tempty interior
\item $K^{**} = cl(convhull(K))$, useful for relaxed optimization
\item $K$ convex and closed $\implies K=K^{**}$
\end{itemize}
\subsection{Operator norm}
$\norm{X}_{a,b}=sup\{\norm{Xu}_a : \norm{u}_b \leq 1 \}, X \in \R^{m\times n}$
\subsection{Dual cone}
\begin{align*}
K\ is\ a\ cone\\
K^* = \{y:x^T y \geq 0, \forall x \in K\}
\end{align*}
\subsection{Dual norm cone}
\begin{align*}
K^* = \set{(u,v): \norm{u}_* \leq v}\\
where\ K = \set{(x,t): \norm{x} \leq t}
\end{align*}
% $\norm{u}_* = sup \set{ u^Tx: \norm{x} \leq 1}$\\
% interpreted as norm of $u^T$\\
% from dual norm definition:\\
% $z^T x \leq \norm{x} \norm{z}_*$\\
% can be tightened: given x, $(\exists z) z^T x = \norm{x} \norm{z}_*$\\
% given z, $(\exists x) z^T x = \norm{x} \norm{z}_*$\\
\subsection{support function of a set}
\begin{align*}
S_C(x) = \sup \set{x^T y : y \in C}\\
dom(S_C) = \set{x: \sup_{y\in C} x^Ty < \infty}
\end{align*}
It is pointwise supremum of convex function, so it is convex.
\vfill\null
\pagebreak
\section{Relaxation}
projection onto the feasible set\\
take a larger feasible set and optimize in it instead, resulting optimal value is smaller or equal to the original\\
equality contraints that are convex but not affine, make them inequalities thus transforming to convex problem
\vfill\null
\pagebreak
\section{Regularized Approximation}
Noise sensitivity of different objectives:
\begin{itemize}
\item robust least squares / Huber penalty
\item log barrier
\item deadzone linear
\item quadratic
\end{itemize}
Least norm problems
\begin{itemize}
\item L2 norm objective with equality constraint
\item sparsity inducing norms (eg: L1)
\item norm ball constraint
\item probability distribution
\begin{itemize}
\item convex comb. of columns of A to fit b
\end{itemize}
\item variable constraints
\begin{itemize}
\item box
\item one sidded bound
\end{itemize}
\end{itemize}
Multicriterion Formulation\\
Tikhonov Regularization\\
todo..
\vfill\null
\pagebreak
\section{Descent Methods}
\begin{algorithm}[H]
init $x_0 \in dom f$\;
\While{stopping criterion is not satisfied}{
$\Delta x \leftarrow$ Compute Descent Direction\;
$t \leftarrow$ Compute Descent Step Size\;
$x_{k+1} \leftarrow x_k + t \Delta x$
}
\caption{Descent Overview\label{Descent}}
\end{algorithm}
\subsection{Search Step Size}
Given $\Delta x$, step direction\\
Search step size:\\
Exact Line Search: $t = \argmin_{s\geq 0} f(x+s \Delta x)$\\
\begin{algorithm}[H]
\SetKwInOut{Input}{$\Delta x$}\SetKwInOut{Output}{t}
\Input{Search direction}
\Output{Step size}
$\alpha \in (0,0.5)$\;
$\beta \in (0,1)$\;
$t \leftarrow$ 1\;
\While{$f(x+ t \Delta x > f(x) + \alpha t \nabla f(x)^T \Delta x$}{
$t \leftarrow \beta t$\;
}
\caption{Backtracking Line Search\label{LS_BT}}
\end{algorithm}
\vfill\null
\columnbreak
\subsection{Search Direction - 1st Order Methods}
Steepest Descent
\begin{align*}
% f(x+\Delta x) \geq f(x) + \nabla f(x)^T \Delta x\\
&\argmin_{\Delta x} f(x) + \nabla f(x)^T \Delta x_{sd}\\
&\argmin_{\Delta x} \nabla f(x)^T \Delta x_{sd}
\end{align*}
Normalized Steepest Descent
\begin{align*}
&\Delta x_{nsd} = \argmin_{v} \set{ \nabla f(x)^T v : \norm{v} \leq 1 }\\
&\Delta x_{nsd} = \frac{\Delta x_{sd}}{\norm{\nabla f(x)}}_*\\
&\norm{\nabla f(x)}_* = \sup_y \{\nabla f(x)^T y: \|y\| \leq 1 \}\ (dual norm)\\
&\nabla f(x)^T \Delta x_{sd} = \nabla f(x)^T \Delta x_{nsd} \norm{\nabla f(x)}_* = \norm{\nabla f(x)}_*^2
\end{align*}
Steepest Descent for L2-Norm
\begin{align*}
&\Delta x = -\nabla f(x)\\
&\Delta x_{nsd} = \frac{-\nabla f(x)}{\norm{\nabla f(x)}}_*\\
\end{align*}
Steepest Descent for Quadratic Norm
\begin{align*}
&\norm{z}_P = (z^TPz)^{\frac{1}{2}} = \norm{P^{\frac{1}{2}}z}_2, P \in S_{++}^n\\
&\Delta x_{nsd} = -(\nabla f(x)^T P^{-1} \nabla f(x))^{-\frac{1}{2}} P^{-1} \nabla f(x)\\
&\Delta x_{sd} = -P^{-1} \nabla f(x)
\end{align*}
Normalized Steepest Descent for L1-norm
\begin{align*}
&\Delta x_{nsd} = \argmin_{v} \set{ \nabla f(x)^T v : \norm{v}_1 \leq 1 }\\
&\Delta x_{nsd} = - sign (\frac{\partial f(x)}{\partial x_i})\ e_i, i: \norm{\nabla f(x)}_{\infty} = |(\nabla f(x))_i|
\end{align*}
\vfill\null
\pagebreak
\subsubsection{Search Direction - 2nd Order Methods,\\ Unconstrained}
Newton's Method
\begin{align*}
&\Delta x_{nt} = - \nabla^2 f(x)^{-1} \nabla f(x)\\
&\nabla^2 f(x)^{-1} \succ 0 \implies\\
&\nabla f(x)^T \Delta x_{nt} = - \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) < 0
\end{align*}
Affine invariance of Newton's method: auto-scaling of level curves to enable better descent direction\\
2nd order Taylor approximation of function is minimized with $\Delta x_{nt}$, so quadratic model gives good approximation near minimizer.\\
Newton Decrement: used for convergence/stopping criterion
Norm of Newton Step:
\begin{align*}
\lambda(x) = (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{\frac{1}{2}} = \norm{(\nabla^2 f(x) \Delta x_{nt})^{\frac{1}{2}}}_2
\end{align*}
Bounding difference of lower bound of 2nd order model and $f(x)$:
\begin{align*}
f(x) - \inf & \{ f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v\\
&: A(x+v) = b \} = \frac{1}{2} \lambda(x)^2
\end{align*}
\begin{align*}
% &\lambda(x) = (\nabla f(x)^T \nabla^2 f(x) ^{-1} \nabla f(x))^{\frac{1}{2}}\\
&\frac{1}{2}\lambda(x)^2 \approx f(x) -p^*\\
&\nabla f(x)^T \Delta x_{nt} = - \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\\
&\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2 = \frac{d}{dt}f(x+\Delta x_{nt}t)|_{t=0}
\end{align*}
\begin{algorithm}[H]
init $x_0 \in dom f$\;
\Do{$\frac{1}{2}\lambda(x)^2>\epsilon$}{
$\Delta x_{nt} \leftarrow -\nabla^2 f(x)^{-1} \nabla f(x)$\;
$\lambda(x)^2 \leftarrow \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$\;
$t \leftarrow$ Compute Step Size (line search)\;
$x_{k+1} \leftarrow x_k + t \Delta x_{nt}$
}
\caption{Newton Method Descent\label{NewtonMethod}}
\end{algorithm}
Assumptions of above algorithm: KKT matrix invertible. Descent method is decreasing wrt. $f$.\\
Convergence: split into damped phase and quadratically convergent phase. Fast convergence once step size is 1.
\vfill\null
\columnbreak
BFGS: a Quasi-newton method\\
Direction:
\begin{align*}
p_k = -B_k^{-1} \nabla f_k
\end{align*}
Properties for $B$:\\
$B \succ 0$\\
$B=B^T$\\
Satisfaction of Secant equation:
\begin{align*}
&B_{k+1} (x_{k+1}-x_k) = \nabla f_{k+1} - \nabla f_K\\
&B_{k+1} s_k = y_k
\end{align*}
Curvature condition:
\begin{align*}
&B_{k+1} s_k = y_k\\
&s_k^T B_{k+1} s_k = s_k^T y_k\\
&B_{k+1} \succ 0 \implies s_k^T y_k > 0
\end{align*}
This need to be enforced if doing optimization on a non-convex function\\
General problem of find $B$
\begin{align*}
&\min_B \norm{B-B_k}\\
&s.t.\ B=B^T, Bs_k = y_k
\end{align*}
BFGS Update:
$B_{k+1}=B_{k}+{\frac {\mathbf {y} _{k}\mathbf {y} _{k}^{\mathrm {T} }}{\mathbf {y} _{k}^{\mathrm {T} }\mathbf {s} _{k}}}-{\frac {B_{k}\mathbf {s} _{k}\mathbf {s} _{k}^{\mathrm {T} }B_{k}^{\mathrm {T} }}{\mathbf {s} _{k}^{\mathrm {T} }B_{k}\mathbf {s} _{k}}}$
\begin{algorithm}[H]
init $x_0 \in dom f$\\
init $B_{0}$ (eg: $I$)\\
\While{$\norm{y_k}>\epsilon$}{
solve for $p_k$ in $B_{k} p_k = -\nabla f(x_k)$\\
$t \leftarrow \argmin_s f(x_k + s p_k)$(or backtrack search)\\
$s_k \leftarrow t p_k$\\
$x_{k+1} \leftarrow x_k + s_k$\\
$y_k = f(x_{k+1}) - f(x_k)$\\
$B_{k+1}=B_{k}+{\frac {\mathbf {y} _{k}\mathbf {y} _{k}^{\mathrm {T} }}{\mathbf {y} _{k}^{\mathrm {T} }\mathbf {s} _{k}}}-{\frac {B_{k}\mathbf {s} _{k}\mathbf {s} _{k}^{\mathrm {T} }B_{k}^{\mathrm {T} }}{\mathbf {s} _{k}^{\mathrm {T} }B_{k}\mathbf {s} _{k}}}$
}
\caption{BFGS Descent\label{BFGS}}
\end{algorithm}
Inversion of $B$ via Sherman-Morrison:\\
${\displaystyle B_{k+1}^{-1}=\left(I-{\frac {\mathbf {s} _{k}\mathbf {y} _{k}^{T}}{\mathbf {y} _{k}^{T}\mathbf {s} _{k}}}\right)B_{k}^{-1}\left(I-{\frac {\mathbf {y} _{k}\mathbf {s} _{k}^{T}}{\mathbf {y} _{k}^{T}\mathbf {s} _{k}}}\right)+{\frac {\mathbf {s} _{k}\mathbf {s} _{k}^{T}}{\mathbf {y} _{k}^{T}\mathbf {s} _{k}}}.}$
Sherman-Morrison:\\
$A^{-1}$ exists: $(A+uv^T)^{-1}$ exists $\iff 1+v^TA^{-1}u \not=0$\\
$(A+uv^T)^{-1}=A^{-1} - \frac{A^{-1}uv^T A^{-1}}{1+v^TA^{-1}u}$\\
\vfill\null
\pagebreak
\section{Equality Constrained Optimization}
Approaches:
\begin{itemize}
\item elimination of equality constraint, variable substitution into objective, unconstrained opt.
\item Newton's Method with equality constraint, and assumed feasible start, unconstrained opt.
\item Newton's Method with equality constraint,\\ infeasible start,\\ equivalence using primal-dual residual method
\end{itemize}
KKT optimality, with x assumed to be feasible:
\begin{align*}
&\Delta x = \argmin_v f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v\\
&s.t.\ A(x+v)=b\\
&optimality\ condition:\\
&L(v,w) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v\\
&+ w^T(A(x+v)-b)\\
&\frac{\partial L(v,w)}{\partial v} = \nabla f(x) + \nabla^2 f(x) v + A^T w = 0\\
&A(x+v) = b\\
&Ax = b \implies Av = 0\\
& KKT\ system:\\
&\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
v\\ w
\end{bmatrix}=
K
\begin{bmatrix}
v\\ w
\end{bmatrix} =
\begin{bmatrix}
-\nabla f(x)\\
0
\end{bmatrix}\\
&\begin{bmatrix}
v\\ w
\end{bmatrix} = K^{-1}
\begin{bmatrix}
-\nabla f(x)\\
0
\end{bmatrix}, K^{-1}\ exists\\
&\Delta x = v
\end{align*}
Alternatively Solve via elimination
\begin{align*}
&\nabla f(x) + \nabla^2 f(x) v + A^T w = 0\\
&v + \nabla^2 f(x)^{-1} A^T w + \nabla^2 f(x)^{-1} \nabla f(x)=0\\
&Av + A \nabla^2 f(x)^{-1} A^T w + A \nabla^2 f(x)^{-1} \nabla f(x)=0\\
&A \nabla^2 f(x)^{-1} A^T w + A \nabla^2 f(x)^{-1} \nabla f(x)=0\\
&w = - (A \nabla^2 f(x)^{-1} A^T)^{-1} A \nabla^2 f(x)^{-1} \nabla f(x)\\
&v = \nabla^2 f(x)^{-1} (-\nabla f(x) - A^T w)\\
&\Delta x = v
\end{align*}
$\nabla^2 f(x)$ not invertible, augment KKT system s.t.\\
$(\exists Q) \nabla^2 f(x) + AQA > 0$
\begin{align*}
&\begin{bmatrix}
\nabla^2 f(x) + AQA & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
v\\ w
\end{bmatrix} =
\begin{bmatrix}
-\nabla f(x)\\
0
\end{bmatrix}\\
&Av=0\\
&AQAv = 0 \implies\ solution\ same\ to\ original\ problem
\end{align*}
\vfill\null
\columnbreak
\begin{algorithm}[H]
init $x_0 \in dom f, Ax_0=b$\;
\Do{$\frac{1}{2}\lambda(x)^2>\epsilon$}{
$\Delta x_{nt} \leftarrow$ Solve KKT System / Elimination\;
$\lambda(x)^2 \leftarrow \Delta x_{nt}^T \nabla^2 f(x)^{-1} \Delta x_{nt}$\;
$t \leftarrow$ Compute Step Size (eg: backtrack)\;
$x_{k+1} \leftarrow x_k + t \Delta x_{nt}$
}
\caption{Newton Method w/ Equality Constraint\label{NewtonMethodEq}}
\end{algorithm}
\subsection{Infeasible Start Newton Method}
Modify KKT system for residual: $Av=b-Ax$
\begin{align*}
&\begin{bmatrix}
\nabla^2 f(x) & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
v\\ w
\end{bmatrix}=
K
\begin{bmatrix}
v\\ w
\end{bmatrix} =
\begin{bmatrix}
-\nabla f(x)\\
b-Ax
\end{bmatrix}
\end{align*}
Once step length becomes 1, all following iterates are feasible.\\
Equivalence with Primal-Dual residual update:
\begin{align*}
&\min_x f(x), s.t.\ Ax=b
\end{align*}
Dual: