-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise1.v
104 lines (92 loc) · 2.68 KB
/
exercise1.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
From elpi Require Import elpi.
From HB Require Import structures.
From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Implicit Type p q r : bool.
Implicit Type m n a b c : nat.
(** *** Exercise 1:
- use no lemma to prove the following statement
*)
Lemma orbC p q : p || q = q || p.
(*D*)(* proof by truth table *)
(*D*)Proof. by case: p; case: q. Qed.
(** *** Exercise 2:
- look up what [==>] is check if there are relevant views
- prove that as you like
*)
Lemma Peirce p q : ((p ==> q) ==> p) ==> p.
(*D*)(* we have classical logic *)
(*D*)Proof. by case: p; case: q. Qed.
(** *** Exercise 3:
- look for lemmas supporting contrapositive reasoning
*)
Lemma bool_gimmics1 a : a != a.-1 -> a != 0.
(*D*)(* Search "contra", and use /eqP *)
(*D*)Proof.
(*D*)apply: contra.
(*D*)move => /eqP Ha.
(*D*)by rewrite Ha.
(*A*)Qed.
(** *** Exercise 4:
- what is [(+)] ?
- find the right view to prove this statement
- now find another proof without the view
*)
Lemma find_me p q : ~~ p = q -> p (+) q.
(*D*)(* Locate "(+)", Seach addb *)
(*D*)Proof.
(*D*)move=> Hq.
(*D*)by rewrite -Hq addbN negb_add eqxx.
(*A*)Qed.
(** *** Exercise 5:
- it helps to find out what is behind [./2] and [.*2] in order to [Search]
- any proof would do, but there is one not using [implyP]
*)
Lemma view_gimmics1 p a b : p -> (p ==> (a == b.*2)) -> a./2 = b.
(*D*)Proof.
(*D*)move=> Hp.
(*D*)rewrite Hp.
(*D*)move=> /eqP Hq.
(*D*)by rewrite Hq doubleK.
(*A*)Qed.
(** *** Exercise 6:
- prove that using [case:]
- then prove that without using [case:]
*)
Lemma bool_gimmics2 p q r : ~~ p && (r == q) -> q ==> (p || r).
(*D*)(* Views, /andP[], move: ... gimmicks *)
(*D*)Proof.
(*D*)move=> /andP[Hp Hr].
(*D*)move: Hp.
(*D*)move=> /negbTE Hp.
(*D*)rewrite Hp.
(*D*)move: Hr.
(*D*)move=> /eqP Hq.
(*D*)rewrite Hq.
(*D*)exact: implybb.
(*A*)Qed.
(** *** Exercise 7:
- the only tactics allowed are [rewrite] and [by]
- use [Search] to find the relevant lemmas (all are good but for
[ltn_neqAle]) or browse the #<a href="https://math-comp.github.io/htmldoc_2_0_alpha1/mathcomp.ssreflect.ssrnat.html">online doc</a>#
- proof sketch:
<<
m < n = ~~ (n <= m)
= ~~ (n == m || n < m)
= n != m && ~~ (n < m)
= ...
>> *)
Lemma ltn_neqAle m n : (m < n) = (m != n) && (m <= n).
(*D*)Proof. by rewrite ltnNge leq_eqVlt negb_or -leqNgt eq_sym. Qed.
(** Exercise 8:
- induction on lists
*)
Lemma mem_cat (T : eqType) (x : T) s1 s2 :
(x \in s1 ++ s2) = (x \in s1) || (x \in s2).
Proof.
(*D*)(* rewrite inE, // and /= *)
(*D*)elim: s1 => [//|y s1 IHs /=].
(*D*)by rewrite !inE /= -orbA -IHs.
(*A*)Qed.