-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise3.v
386 lines (322 loc) · 9.87 KB
/
exercise3.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
From elpi Require Import elpi.
From HB Require Import structures.
From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(**
----
** Exercise 1 *)
(**
Try to define a next function over 'I_n that correspond to the
successor function over the natural plus the special case that
"n -1" is mapped to zero
Hint: potentially useful theorems are: [ltn_neqAle], [ltnS], [negbT], [ifP]
Hint: potentially useful tactics are [case], [move], [rewrite]
Hint: you may also need to use the val function (or \val notation) *)
Definition onext n (x : 'I_n) : 'I_n.
Proof.
refine (
(* sub takes two arguments: a value and a proof *)
sub
(* Write the valued in the following line *)
(*D*)(if val x == n.-1 then 0 else x.+1)
(* Leave _ for the proof, you will fill it in by tactics later *)
_
(* more precisely: sub must have two arguments, the second one being _ *)
).
(*D*)case: x => [m /=].
(*D*)case: n => [ | n] /=.
(*D*) by [].
(*D*)case: ifP.
(*D*) move/eqP=> misn.
(*D*) move=> _.
(*D*) by [].
(*D*)move=> test_false.
(*D*)rewrite ltnS.
(*D*)move=> mlen.
(*D*)rewrite ltnS.
(*D*)have neq := negbT test_false.
(*D*)rewrite ltn_neqAle.
(*D*)rewrite neq.
(*D*)rewrite mlen.
(*D*)by [].
(* Finish the proof with the Defined keyword, so that we can compute this
function in tests afterward. *)
Defined.
(** These should return 3 and 0 respectively. *)
Eval compute in val (onext (Ordinal (isT : 2 < 4))).
Eval compute in val (onext (Ordinal (isT : 3 < 4))).
(**
----
** Exercise 2
*)
(**
Show that injectivity is decidable for a function [f : aT -> rT]
when [aT] is a finite type.
As a first step, we exhibit a boolean formulation of injectivity:
a boolean formula, based on boolean "forall", "exists", and "==>" and
boolean equality, which expresses the property of injectivity.
We then show that this boolean formula is equivalent to th existing notion
of [injective], which is not injective in general.
*)
Module MyInj.
Check injective.
Definition injectiveb (aT : finType) (rT : eqType) (f : aT -> rT) : bool :=
(*D*) [forall x : aT, forall y : aT, (f x == f y) ==> (x == y)].
Lemma injectiveP (aT : finType) (rT : eqType) (f : aT -> rT) :
reflect (injective f) (injectiveb f).
Proof.
apply: (iffP forallP).
(*D*) move=> Ibf.
(*D*) move=> x.
(*D*) move=> y.
(*D*) move=> Efxy.
(*D*) have {Ibf}:= Ibf x.
(*D*) move=>/forallP Ibf'.
(*D*) have {Ibf'} := Ibf' y.
(*D*) move=>/implyP.
(*D*) rewrite Efxy.
(*D*) rewrite eqxx.
(*D*) move=>Ibf''.
(*D*) have{Ibf''} := Ibf'' isT.
(*D*) move/eqP.
(*D*) by [].
(*D*)move=> If x.
(*D*)apply/forallP=> y.
(*D*)apply/implyP=> /eqP Efxfy.
(*D*)apply/eqP.
(*D*)apply: If.
(*D*)by [].
(*A*)Qed.
End MyInj.
(**
----
** Exercise 3
Build a function that maps an element of an ordinal to another element
of the same ordinal with a p subtracted from it.
Hint: if [i] has type ['I_n], then [i] can also be used for type [nat]
and [i < n] is given by theorem [ltn_ord]. Others potentially useful
theorems are [leq_ltn_trans] and [leq_subr]
*)
Lemma neg_offset_ord_proof n (i : 'I_n) (p : nat) : i - p < n.
Proof.
(*D*)have : i < n.
(*D*) apply: ltn_ord.
(*D*)apply: leq_ltn_trans.
(*D*)by apply: leq_subr.
(*A*)Qed.
Definition neg_offset_ord n (i : 'I_n) p := Ordinal (neg_offset_ord_proof i p).
Eval compute in (val (neg_offset_ord (Ordinal (isT : 7 < 9)) 4)).
(**
----
** Exercise 4
*)
(**
Prove the following statement by induction in several ways.
- a proof by induction
- a proof by reorganization:
<<
2 * (1 + 2 ... + n) = (1 + 2 ... + (n - 1) + n) +
(n + (n - 1) ... + 2 + 1)
= (1 + n) + (2 + n - 1) +
... + (n + 1)
= n * (1 + n)
>>
- Two variants of proof by reorganization are possible: one using
[neg_offset_ord], the other using [rev_ord]
Hint: potentially useful theorems: [big_ord0], [big_ord_recr],
[doubleD], [muln2], [mulnDr], [addn2], [mulnC], [leq_trans],
[ltnS], [leq_subr], [neg_offset_ord], [reindex_inj], [ord_max],
[val_eqP], [eqP], [subKn], [ltnS], [big_split], [eqxx], [subnK],
[eq_bigr], [sum_nat_const], [card_ord], [rev_ord_inj], [subSS]
*)
Lemma gauss_ex_p1 : forall n, (\sum_(i < n) i).*2 = n * n.-1.
Proof.
(*D*)elim=> [|n IH].
(*D*) rewrite big_ord0.
(*D*) by [].
(*D*)rewrite big_ord_recr /=.
(*D*)rewrite doubleD.
(*D*)rewrite {}IH.
(*D*)case: n => [| n /=].
(*D*) by [].
(*D*)rewrite -muln2.
(*D*)rewrite -mulnDr.
(*D*)rewrite addn2.
(*D*)rewrite mulnC.
(*D*)by [].
(*A*)Qed.
Lemma gauss_ex_p2 : forall n, (\sum_(i < n) i).*2 = n * n.-1.
Proof.
(*D*)case=> [|n/=].
(*D*) by rewrite big_ord0.
(*D*)rewrite -addnn.
(*D*)have Hf i : n - i < n.+1.
(*D*) rewrite ltnS.
(*D*) by apply: leq_subr.
(*D*)pose f (i : 'I_n.+1) := neg_offset_ord (@ord_max n) i.
(*D*)have f_inj : injective f.
(*D*) move=> x y.
(*D*) rewrite /f /=.
(*D*) move=>/val_eqP/eqP /= Efxfy.
(*D*) apply/val_eqP => /=.
(*D*) have -> : \val x = n - (n - x).
(*D*) rewrite subKn.
(*D*) by [].
(*D*) rewrite -ltnS.
(*D*) by [].
(*D*) rewrite Efxfy.
(*D*) rewrite subKn.
(*D*) rewrite eqxx.
(*D*) by [].
(*D*)rewrite -ltnS.
(*D*)by [].
(*D*)rewrite {1}(reindex_inj f_inj) /=.
(*D*)rewrite -big_split /=.
(*D*)have ext_eq : forall i : 'I_n.+1, true -> n - i + i = n.
(*D*) move=> i _.
(*D*) rewrite subnK.
(*D*) by [].
(*D*) rewrite -ltnS.
(*D*) by [].
(*D*)rewrite (eq_bigr (fun _ => n) ext_eq).
(*D*)rewrite sum_nat_const.
(*D*)rewrite card_ord.
(*D*)by[].
Qed.
Lemma gauss_ex_p3 : forall n, (\sum_(i < n) i).*2 = n * n.-1.
Proof.
(*D*)case=> [|n/=]; first by rewrite big_ord0.
(*D*)rewrite -addnn {1}(reindex_inj rev_ord_inj) -big_split /=.
(*D*)rewrite -[X in _ = X * _]card_ord -sum_nat_const.
(*D*)by apply: eq_bigr => i _; rewrite subSS subnK // -ltnS.
(*A*)Qed.
(**
----
** Exercise 5
*)
(**
Try to formalize the following problem
*)
(**
Given a parking where the boolean indicates if the slot is occupied or not
*)
Definition parking n := 'I_n -> 'I_n -> bool.
(**
Number of cars at line i
*)
Definition sumL n (p : parking n) i := \sum_(j < n) p i j.
(**
Number of cars at column j
*)
Definition sumC n (p : parking n) j := \sum_(i < n) p i j.
(**
Show that if 0 < n there is always two lines, or two columns, or a column and a line
that have the same numbers of cars
*)
(* Two intermediate lemmas to use injectivity *)
Lemma leq_sumL n (p : parking n) i : sumL p i < n.+1.
Proof.
(*D*)have {2}<-: \sum_(i < n) 1 = n by rewrite -[X in _ = X]card_ord sum1_card.
(*D*)by apply: leq_sum => k; case: (p _ _).
(*A*)Qed.
Lemma leq_sumC n (p : parking n) j : sumC p j < n.+1.
Proof.
(*D*)have {2}<-: \sum_(i < n) 1 = n by rewrite -[X in _ = X]card_ord sum1_card.
(*D*)by apply: leq_sum => k; case: (p _ _).
(*A*)Qed.
Lemma inl_inj {A B} : injective (@inl A B). Proof. by move=> x y []. Qed.
Lemma inr_inj {A B} : injective (@inr A B). Proof. by move=> x y []. Qed.
Lemma result n (p : parking n) : 0 < n ->
exists i, exists j,
[\/ (i != j) /\ (sumL p i = sumL p j),
(i != j) /\ (sumC p i = sumC p j) | sumL p i = sumC p j].
Proof.
(*D*)case: n p => [//|[|n]] p _ /=.
(*D*) exists ord0, ord0; apply: Or33.
(*D*) by rewrite /sumL /sumC !big_ord_recl !big_ord0.
(*D*)pose sLC (i : 'I_n.+2 + 'I_n.+2) :=
(*D*) match i with
(*D*) | inl i => Ordinal (leq_sumL p i)
(*D*) | inr i => Ordinal (leq_sumC p i) end.
(*D*)have [sC_inj | /injectivePn /=] := altP (injectiveP sLC).
(*D*) have := max_card (mem (codom sLC)); rewrite card_codom // card_sum !card_ord.
(*D*) by rewrite !addnS !addSn !ltnS -ltn_subRL subnn ltn0.
(*D*)move=> [[i|i] [[j|j] //=]]; [| |move: i j => j i|];
(*D*)rewrite ?(inj_eq inj_inl, inj_eq inj_inr) => neq_ij [];
(*D*)by exists i, j; do ?[exact: Or31|exact: Or32|exact: Or33].
(*A*)Qed.
(**
----
** Exercise 6
*)
Lemma sum_odd1 : forall n, \sum_(i < n) (2 * i + 1) = n ^ 2.
Proof.
(*D*)case=> [|n/=]; first by rewrite big_ord0.
(*D*)rewrite big_split -big_distrr /= mul2n gauss_ex_p3 sum_nat_const.
(*D*)by rewrite card_ord -mulnDr addn1 mulnn.
(*A*)Qed.
(**
----
** Exercise 7
*)
Lemma sum_exp : forall x n, x ^ n.+1 - 1 = (x - 1) * \sum_(i < n.+1) x ^ i.
Proof.
(*D*)move=> x n.
(*D*)rewrite mulnBl big_distrr mul1n /=.
(*D*)rewrite big_ord_recr [X in _ = _ - X]big_ord_recl /=.
(*D*)rewrite [X in _ = _ - (_ + X)](eq_bigr (fun i : 'I_n => x * x ^ i))
(*D*) => [|i _]; last by rewrite -expnS.
(*D*)rewrite [X in _ = X - _]addnC [X in _ = _ - X]addnC subnDA addnK.
(*D*)by rewrite expnS expn0.
(*A*)Qed.
(**
----
** Exercise 8
*)
(** Prove the following statement by induction and by using a similar trick
as for Gauss noticing that n ^ 3 = n * (n ^ 2) *)
Lemma bound_square : forall n, \sum_(i < n) i ^ 2 <= n ^ 3.
Proof.
(*D*)move=> n.
(*D*)rewrite expnS -[X in _ <= X * _]card_ord -sum_nat_const /=.
(*D*)elim/big_ind2: _ => // [* |i]; first exact: leq_add.
(*D*)by rewrite leq_exp2r // ltnW.
(*A*)Qed.
(**
----
** Exercise 9
Prove the following statement using only big operator theorems.
[big_cat_nat], [big_nat_cond], [big_mkcondl], [big1]
*)
Lemma sum_prefix_0 (f : nat -> nat) n m : n <= m ->
(forall k, k < n -> f k = 0) ->
\sum_(0 <= i < m) f i = \sum_(n <= i < m) f i.
Proof.
(*D*)pose H := big_cat_nat.
(*D*)move => nm f0; rewrite (big_cat_nat _ _ f (leq0n n)) /=; last by [].
(*D*)rewrite big_nat_cond big_mkcondl big1 ?add0n //.
(*D*)move => i _; case cnd : (0 <= i < n) => //.
(*D*)apply: f0.
(*D*)by move/andP: cnd => [_ it].
(*A*)Qed.
(**
----
** Exercise 10
*)
(**
building a monoid law
*)
Section cex.
Variable op2 : nat -> nat -> nat.
Hypothesis op2n0 : right_id 0 op2.
Hypothesis op20n : left_id 0 op2.
Hypothesis op2A : associative op2.
Hypothesis op2add : forall x y, op2 x y = x + y.
HB.instance Definition _ := Monoid.isLaw.Build nat 0 op2 op2A op20n op2n0.
Lemma ex_op2 : \big[op2/0]_(i < 3) i = 3.
Proof.
(*D*)by rewrite !big_ord_recr big_ord0 /= !op2add.
(*A*)Qed.
End cex.