-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
469 lines (383 loc) · 16.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# -*- coding: utf-8 -*-
# train.py
# this file is material part of of the dissertation 'Deep Learning for Emotion Recognition in Cartoons'
# [c] 2016-2017 John Wesley Hill
import os
import sys
import copy
import numpy as np
import matplotlib.image as img
import matplotlib.pyplot as plt
from PIL import Image
from keras import backend as K
from keras import optimizers
from keras.models import Sequential
from keras.callbacks import TensorBoard, Callback
from keras.utils import to_categorical as one_hot
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras import optimizers
from vis.utils import utils
from vis.visualization import visualize_activation, visualize_saliency, get_num_filters
model_version = "v1.6"
emotions = ["happy", "angry", "surprise", "sad", "fear", "disgust"]
w, h = (60, 60)
epochs = 50
COLOR = {
'G':'\x1B[32m',
'R':'\x1B[31m',
'RS':'\x1B[0m'
}
# PlotStats callback for printing custom plot stats of the model.
class PlotStats(Callback):
def on_train_end(self, logs={}):
# model loss plot.
plt.plot(self.losses)
plt.plot(self.val_losses, color="green")
plt.title('Learning curve for model loss')
plt.ylabel('loss')
plt.xlabel('epochs ({})'.format(epochs))
plt.legend(['training', 'testing'], loc='upper left')
plt.savefig('model_{}_loss.png'.format(model_version))
plt.gcf().clf()
# model accuracy plot.
plt.plot(self.acc)
plt.plot(self.val_acc, color="green")
plt.title('Learning curve for model accuracy'.format(epochs))
plt.ylabel('accuracy')
plt.xlabel('epochs ({})'.format(epochs))
plt.legend(['training', 'testing'], loc='upper left')
plt.savefig('model_{}_accuracy.png'.format(model_version))
plt.gcf().clf()
def on_train_begin(self, logs={}):
self.losses = []
self.acc = []
self.val_acc = []
self.val_losses = []
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.val_losses.append(logs.get('val_loss'))
self.acc.append(logs.get('acc'))
self.val_acc.append(logs.get('val_acc'))
# loads the emotion datasets and constructs them into numpy arrays
# for training & testing for a character.
def load_emotion_data_for(character):
DATASETS = {
'happy': {
'training':'datasets/' + character + '/happy/training',
'testing':'datasets/' + character + '/happy/testing',
},
'angry': {
'training':'datasets/' + character + '/angry/training',
'testing':'datasets/' + character + '/angry/testing',
},
'surprise': {
'training':'datasets/' + character + '/surprise/training',
'testing':'datasets/' + character + '/surprise/testing',
}
}
emotions_training = []
emotions_testing = []
# training
# append paths for happy training...
for hd_train in os.listdir(DATASETS['happy']['training']):
emotions_training.append(os.path.join(DATASETS['happy']['training'], hd_train))
# append paths for angry training...
for ad_train in os.listdir(DATASETS['angry']['training']):
emotions_training.append(os.path.join(DATASETS['angry']['training'], ad_train))
# Append paths for surprise training...
for sp_train in os.listdir(DATASETS['surprise']['training']):
emotions_training.append(os.path.join(DATASETS['surprise']['training'], sp_train))
# todo: append paths for other emotions for training...
# ...
# testing
# append paths for happy testing...
for hd_test in os.listdir(DATASETS['happy']['testing']):
emotions_testing.append(os.path.join(DATASETS['happy']['testing'], hd_test))
# append paths for angry testing...
for ad_test in os.listdir(DATASETS['angry']['testing']):
emotions_testing.append(os.path.join(DATASETS['angry']['testing'], ad_test))
# append paths for surprise testing...
for sp_test in os.listdir(DATASETS['surprise']['testing']):
emotions_testing.append(os.path.join(DATASETS['surprise']['testing'], sp_test))
# todo: append paths for other emotions for testing...
# ...
data_size = len(emotions_training) // len(DATASETS.keys())
# labels
# happy labels / label 0
happy_labels_train = np.zeros(data_size)
happy_labels_test = np.zeros(data_size)
# angry labels / label 1 (fill with ones)
angry_labels_train = np.zeros(data_size)
angry_labels_train.fill(1)
angry_labels_test = np.zeros(data_size)
angry_labels_test.fill(1)
# surprise labels / label 2 (fill with ones)
surprise_labels_train = np.zeros(data_size)
surprise_labels_train.fill(2)
surprise_labels_test = np.zeros(data_size)
surprise_labels_test.fill(2)
# todo: other emotion labels / label n (fill with n's) (see the emotion array)
# ...
# append training & testing emotion labels.
emotion_training_labels = np.append(happy_labels_train, angry_labels_train)
emotion_training_labels = np.append(emotion_training_labels, surprise_labels_train)
emotion_testing_labels = np.append(happy_labels_test, angry_labels_test)
emotion_testing_labels = np.append(emotion_testing_labels, surprise_labels_test)
print "(training) loaded {} images & {} labels for {}...".format(len(emotions_training), len(emotion_training_labels), character)
print "(testing) loaded {} images & {} labels for {}...".format(len(emotions_testing), len(emotion_testing_labels), character)
return (emotions_training, emotion_training_labels), (emotions_testing, emotion_testing_labels)
# process images into numpy for training & testing.
def process_images(fp):
imgs = []
for f in fp:
img = load_img(f)
img = img.resize((w,h), Image.ANTIALIAS)
img = img_to_array(img) / 255
img = img.reshape(3, w, h)
imgs.append(img)
return np.array(imgs)
# display an image with a or without a label in matplotlib.
def show_image(i, l=None):
plt.imshow(array_to_img(i[0].reshape(3, w, h)))
if l is not None:
print "label: {}".format(emotions[np.argmax(l[0])])
plt.axis('off')
plt.show()
# fetches a random image from a given dataset.
# returns a numpy image, the original image and the ground truth label.
def random_image_from_dataset(i, gtl):
ri = np.random.choice(len(i))
numpy_img = i[ri]
orig = array_to_img(numpy_img.reshape(3, w, h))
numpy_img = i[ri].reshape(1, 3, w, h)
return numpy_img, orig, gtl[ri]
# configuration before classification and training.
def setup(reproduce=True):
# fix the seed to reproduce results in this dissertation.
seed = 12379231
if reproduce is True:
np.random.seed(seed)
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
# callbacks for keras.
def load_callbacks():
# log to tensorboard for debugging and training + testing metrics.
if not os.path.exists('datasets/logs'):
os.mkdir('datasets/logs')
ps = PlotStats()
tb = TensorBoard(log_dir='./datasets/logs', histogram_freq=1, write_graph=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)
return [tb, ps]
# main dataset loader for tom and jerry.
def load_dataset():
tom_training, tom_testing = load_emotion_data_for("tom")
jerry_training, jerry_testing = load_emotion_data_for("jerry")
training_i = np.append(tom_training[0], jerry_training[0])
training_l = np.append(tom_training[1], jerry_training[1])
testing_i = np.append(tom_testing[0], jerry_testing[0])
training_l = np.append(tom_testing[1], jerry_testing[1])
return (training_i, training_l), (testing_i, training_l)
# perform training.
def load_training_and_testing_data():
print "loading training & testing data..."
training, testing = load_dataset()
# process testing and training images -> numpy arrays.
train_images = process_images(training[0])
test_images = process_images(testing[0])
# convert training and testing to one hot vectors.
train_labels = one_hot(training[1], num_classes=6)
test_labels = one_hot(testing[1], num_classes=6)
# shuffle training data in sync for better training.
rng = np.random.get_state()
np.random.shuffle(train_images)
np.random.set_state(rng)
np.random.shuffle(train_labels)
# partition dataset 80/20. (80 -> training, 20 -> testing)
r = np.random.rand(train_images.shape[0])
part = r < np.percentile(r, 80)
train_images = train_images[part]
train_labels = train_labels[part]
test_images = test_images[-part]
test_labels = test_labels[-part]
# optionally show images and labels.
# show_image(train_images, train_labels)
# show_image(test_images, test_labels)
return train_images, train_labels, test_images, test_labels
# train images and test labels.
def train(train_i, train_l, test_i, test_l, visualise, summary):
# additional callbacks to aid training and viewing plots and visualisations.
cb = load_callbacks()
# load our cnn model.
cnn = load_cnn_model()
# begin training and save the model when finished.
if not os.path.isfile('model_{}_.h5'.format(model_version)):
print "training..."
cnn.fit(train_i, train_l, epochs=epochs, batch_size=32, verbose=1, callbacks=cb, validation_data=(test_i, test_l))
# after training, save the weights.
cnn.save_weights('model_{}_.h5'.format(model_version))
# load the weights if they exist.
cnn.load_weights('model_{}_.h5'.format(model_version))
# model evaluation.
loss, acc = cnn.evaluate(test_i, test_l, verbose=0)
print "model loss {:.1f}%".format(loss)
print "model accuracy {:.1f}%\n".format(acc)
# print summary if true.
if summary is True:
print "summary:"
cnn.summary()
if visualise is True:
# show at least n test results for testing.
n = 10
for e, i in enumerate(range(n)):
# fetch a random image.
i, original, gtl = random_image_from_dataset(test_i, test_l)
plt.imshow(original)
plt.axis('off')
print "sample image: {}\n---".format(e+1)
# get the predicted class and the predicted probabilities.
pred_class, prob = (cnn.predict_classes(i, verbose=0)[0], cnn.predict(i, verbose=0).flatten())
predicted_emotion = str(emotions[pred_class])
ground_truth_emotion = str(emotions[np.argmax(gtl)])
confidence_score = float(prob[pred_class] * 100)
# check if the label match the prediction.
if ground_truth_emotion is predicted_emotion:
plt.text(3, 7, predicted_emotion.title(), fontsize=36, color="lime")
print "image prediction: {} | confidence score: ({:.1f}%)".format(COLOR['G'] + predicted_emotion + COLOR['RS'], confidence_score)
else:
plt.text(3, 7, predicted_emotion.title(), fontsize=36, color="red")
print "image prediction: {} | confidence score: ({:.1f}%)".format(COLOR['R'] + predicted_emotion + COLOR['RS'], confidence_score)
# display the closer emotion probabilities.
for p in np.argsort(-prob):
print "{}: {:.1f}%".format(str(emotions[p]), float(prob[p] * 100))
# display the ground truth emotion.
print "ground truth: {}\n".format(COLOR['G'] + str(ground_truth_emotion) + COLOR['RS'])
plt.show()
plt.gcf().clf()
# the main convolutional neural network architecture.
def load_cnn_model():
# define convnet model.
cnn = Sequential()
# 3x3 convolution & 2x2 maxpooling with a input image of 60x60x3.
cnn.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(3, w, h), name="conv_layer_1"))
cnn.add(MaxPooling2D(pool_size=(2, 2), name='maxpool_1'))
# 3x3 convolution & 2x2 maxpooling.
cnn.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_layer_2'))
cnn.add(MaxPooling2D(pool_size=(2, 2), name='maxpool_2'))
# 3x3 convolution & 9x9 maxpooling.
cnn.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_layer_3'))
cnn.add(MaxPooling2D(pool_size=(9, 9), name='maxpool_3'))
# dropout 50% and flatten layer.
cnn.add(Dropout(0.5))
cnn.add(Flatten(name='flatten_1'))
# fully connected layers and the output layer.
cnn.add(Dense(512, activation='relu', name='fully_connected_1'))
cnn.add(Dense(6, activation='softmax', name='output_layer'))
o = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
cnn.compile(loss='categorical_crossentropy', optimizer=o, metrics=['accuracy'])
# return the cnn model.
return cnn
# classify an emotion from an image.
def classify_emotion_from_image(local_image):
# classify input image, if it exists.
if os.path.isfile('model_{}_.h5'.format(model_version)):
print "loading model..."
cnn = load_cnn_model()
cnn.load_weights('model_{}_.h5'.format(model_version))
# load local image.
loaded_img = process_images(local_image)
print "classifying..."
# get the predicted class and the predicted probabilities.
pred_class, prob = (cnn.predict_classes(loaded_img, verbose=0)[0], cnn.predict(loaded_img, verbose=0).flatten())
predicted_emotion = str(emotions[pred_class])
confidence_score = float(prob[pred_class] * 100)
print "image: {}\n---".format(sys.argv[2])
print "image prediction: {} | confidence score: ({:.1f}%)".format(COLOR['G'] + predicted_emotion + COLOR['RS'], confidence_score)
# display the closer emotion probabilities.
for p in np.argsort(-prob):
print "{}: {:.1f}%".format(str(emotions[p]), float(prob[p] * 100))
# display image.
plt.text(3, 7, predicted_emotion.title(), fontsize=36, color="purple")
show_image(loaded_img)
else:
print "unable to classify image \'{}\', model does not exist, train the network first.".format(local_image[0])
# create visualisations, requires a predefined model.
def vis(img):
if os.path.isfile('model_{}_.h5'.format(model_version)):
print 'loading model...'
cnn = load_cnn_model()
cnn.load_weights('model_{}_.h5'.format(model_version))
# list all layers in loaded model.
layer_name = "output_layer"
layer_idx = [idx for idx, layer in enumerate(cnn.layers) if layer.name == layer_name][0]
# selected layers to visualise.
layers = ['conv_layer_1', 'conv_layer_2', 'conv_layer_3', 'output_layer']
# visualise convnet visualisation for each layer, place them in a subplot.
for layer_name in layers:
print "Generating visualisation of {}".format(layer_name)
layer_idx = [idx for idx, layer in enumerate(cnn.layers) if layer.name == layer_name][0]
if 'conv' not in layer_name:
plt.figure()
for idx, e in enumerate(emotions):
plt.subplot(6, 6, idx + 1)
plt.text(1, 7, '{}'.format(e))
img = visualize_activation(cnn, layer_idx, filter_indices=idx, max_iter=750)
img = array_to_img(img.reshape(3, w, h))
plt.axis('off')
plt.imshow(img)
plt.suptitle('Visualisation of the Output Layer')
plt.savefig('{}.png'.format(layer_name), bbox_inches='tight')
plt.show()
break
filters = np.arange(get_num_filters(cnn.layers[layer_idx]))
images = []
for idx in filters:
img = visualize_activation(cnn, layer_idx, tv_weight=0, verbose=False, filter_indices=idx, max_iter=750)
img = array_to_img(img.reshape(3, w, h))
images.append(img)
plt.figure()
for idx, i in enumerate(images):
plt.subplots_adjust(wspace=0, hspace=0)
plt.subplot(6, 6, idx + 1)
plt.text(0, 15, 'Filter {}'.format(idx) )
plt.axis('off')
plt.imshow(i)
plt.suptitle('Visualisation of Convolution Layer {}'.format(layer_name[len(layer_name)-1]))
plt.savefig('{}.png'.format(layer_name), bbox_inches='tight')
plt.show()
else:
print 'model does not exist, train the network first.'
def main():
visualise_classification = False
summary = False
# -V - visualise convnet layers.
if '-V' in sys.argv[1:]:
vis(sys.argv[2:])
# -t - train or visualise classification or print a summary of the model.
elif '-t' in sys.argv[1:]:
train_i, train_l, test_i, test_l = load_training_and_testing_data()
if '-v' in sys.argv[1:]:
visualise_classification = True
if '-s' in sys.argv[1:]:
summary = True
train(train_i, train_l, test_i, test_l, visualise_classification, summary)
# -c - classify, classifies one image from an existing model.
elif '-c' in sys.argv[1:]:
if os.path.isfile(sys.argv[2]):
# load image for classification.
loaded_img = [sys.argv[2]]
classify_emotion_from_image(loaded_img)
else:
print 'unable to classify image \'{}\', does not exist.'.format(sys.argv[2])
else:
print '### Deep Learning for Emotion Recognition in Cartoons ###'
print 'training: (and show summary or results)'
print 'usage: train.py -t [-v|-s]\n'
print 'classification:'
print 'usage: train.py -c image.jpg'
print 'visualisation:'
print 'usage: train.py -V'
if __name__ == '__main__':
# early setup
setup(False)
K.set_image_dim_ordering('th')
main()