-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathblacklitterman.py
468 lines (385 loc) · 19.8 KB
/
blacklitterman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import os
import numpy as np
import pandas as pd
import scipy as sp
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
import datetime
import warnings
warnings.simplefilter('ignore')
from pypfopt import black_litterman, risk_models
from pypfopt import BlackLittermanModel, plotting
from pypfopt import EfficientFrontier, objective_functions
from itertools import product
from tqdm import tqdm
import time
import cvxpy as cp
def L1_norm(w, b = 1):
return b * cp.norm(w, 1)
def lr_momentum(df):
df = np.log(df)
x = np.arange(len(df))
res = sp.stats.linregress(x, df)
return ((1 + res.slope) ** 105) if res.slope > 0 else ((-1 - res.slope) ** 105)
#return ((1 + res.slope) ** 105) * (res.rvalue ** 2) if res.slope > 0 else (((1 + res.slope) ** 105) * (res.rvalue ** 2)) * (-1)
if res.rvalue **2 >= 0.4:
return ((1 + res.slope) ** 105) if res.slope > 0 else ((-1 - res.slope) ** 105)
else:
return ((1 + res.slope) ** 105) * (res.rvalue ** 2) if res.slope > 0 else (((1 + res.slope) ** 105) * (res.rvalue ** 2)) * (-1)
def lr_std(df):
df = np.log(df)
x = np.arange(len(df))
res = sp.stats.linregress(x, df)
return res.stderr
def sharpe_ratio(df):
returns = df.pct_change().dropna()
vol = returns.std() * np.sqrt(252)
annualized = (returns + 1).prod() ** (252/len(returns)) - 1
#excess = annualized - 0.03
excess = annualized
return excess / vol
def momentum(df, method='basic', days=100):
if method == 'basic':
return_df = (np.log(df) - np.log(df.shift(days))).dropna()
momentum_df = return_df.iloc[-1, :]
momentum_df= pd.DataFrame(momentum_df)
momentum_df.columns = ['momentum']
momentum_df['rank'] = momentum_df.momentum.rank(ascending=False)
momentum_df=momentum_df.sort_values(by='rank')
return momentum_df
if method == 'sharpe':
df2 = df.iloc[-days-1:].copy()
data = df2.copy()
for col in df.columns:
data[col] = df2[col].rolling(days).apply(sharpe_ratio)
data[col+'_stderr'] = df2[col].rolling(days).std()
lr_df = data[-1:].reset_index(drop=True).T.iloc[:len(df.columns), :]
lr_stderr_df = data[-1:].reset_index(drop=True).T.iloc[len(df.columns):, :]
lr_df.columns =['lr']
lr_stderr_df.columns = ['lr_stderr']
lr_df['rank'] = lr_df.lr.rank(ascending=False)
lr_df = lr_df.sort_values(by='rank')
return lr_df, lr_stderr_df
if method == 'momentum':
df2 = df.iloc[-days:].copy()
data = df2.copy()
for col in df.columns:
data[col] = df2[col].rolling(days).apply(lr_momentum)
data[col+'_stderr'] = df2[col].rolling(days).apply(lr_std)
lr_df = data[-1:].reset_index(drop=True).T.iloc[:len(df.columns), :]
lr_stderr_df = data[-1:].reset_index(drop=True).T.iloc[len(df.columns):, :]
lr_df.columns =['lr']
lr_stderr_df.columns = ['lr_stderr']
lr_df['rank'] = lr_df.lr.rank(ascending=False)
lr_df = lr_df.sort_values(by='rank')
return lr_df, lr_stderr_df
name = ['KODEX 200','TIGER 코스닥150','TIGER 미국S&P500선물(H)','TIGER 유로스탁스50(합성,H)','KINDEX 일본 Nikkei225(H)','TIGER 차이나CSI300','KOSEF 국고채10년', 'KBSTAR 중기우량회사채','TIGER 단기선진하이일드(합성,H)','KODEX 골드선물(H)','TIGER 원유선물Enhanced(H)','KODEX 인버스','KOSEF 미국달러선물','KOSEF 미국달러인버스선물', 'KOSEF 단기자금']
code_cap = ['69500', '233160', '143850','195930','238720', '192090', '148070','136340','182490','132030','130680','114800','138230','139660', '130730']
code = ['069500', '233160', '143850','195930','238720', '192090', '148070','136340','182490','132030','130680','114800','138230','139660', '130730']
def load_info(date):
try:
marcap = pd.read_csv('./ETF/{}.csv'.format(date), encoding='ISO-8859-1')
except:
print("Probably Weekend, Not a trading day")
return
marcap[marcap.columns[0]] = marcap[marcap.columns[0]].astype('str')
marcap = marcap.loc[marcap.iloc[:,0].isin(code_cap)][[marcap.columns[0], marcap.columns[11]]]
marcap.columns = ['code','marcap']
marcap.reset_index(drop=True, inplace=True)
marcap.code.values[2] = '069500'
info = pd.DataFrame(zip(name, code), columns=['name', 'code'])
info = pd.merge(info, marcap, on='code')
return info
def load_data(start, end, kind='data'):
if kind=='market':
df = fdr.DataReader('069500', start=start, end=end)['Close']
return df
if kind=='data':
df = pd.DataFrame([fdr.DataReader(c, start=start, end=end)['Close'] for c in code]).T
df.columns = name
return df
def bl_prior(df, market, marcap, plot_cov=False, plot_prior=False):
"""Return: sigma, d, marcap_dict, market_prior"""
sigma = risk_models.CovarianceShrinkage(df).ledoit_wolf()
#sigma = risk_models.risk_matrix(df)
d = black_litterman.market_implied_risk_aversion(market)
d = 1 if d <= 0 else d
if plot_cov:
plt.rcParams["font.family"] = 'NanumGothic'
plotting.plot_covariance(sigma, plot_correlation=True)
plt.show()
marcap_dict = {}
for name in marcap.name.values:
marcap_dict[name] = marcap.loc[marcap.name==name].marcap.values[0]
marcap_dict = pd.Series(marcap_dict)
market_prior = black_litterman.market_implied_prior_returns(marcap_dict, d, sigma)
if plot_prior:
# matplotlib 한글폰트
plt.rcParams["font.family"] = 'NanumGothic'
market_prior.plot(kind='barh')
plt.show()
return sigma, d, marcap_dict, market_prior
def bl_investors_view(df, method, days,sigma, display_rank=True):
m, stderr = momentum(df, method=method, days=days)
if display_rank:
display(m)
view = {}
for c in m.index.values:
view[c] = m.loc[m.index == c].lr.values[0]
normalized_stderr = stderr.values.squeeze() / stderr.values.squeeze().sum()
confidence = (1 - normalized_stderr) * (1 - np.diag(sigma))
return view, confidence
def bl_posterior(sigma, market_prior, view, confidence, marcap_dict, d, plot_return=True):
model = BlackLittermanModel(sigma, pi=market_prior, absolute_views = view, omega="idzorek",view_confidences = confidence, market_caps=marcap_dict, risk_aversion=d)
returns_bl = model.bl_returns()
returns_df = pd.DataFrame([market_prior, returns_bl, pd.Series(view)], index=["Prior", "Posterior", "Views"]).T
sigma_bl = model.bl_cov()
if plot_return:
display(returns_df)
plt.rcParams["font.family"] = 'NanumGothic'
returns_df.plot.bar(figsize=(20,10))
plt.show()
return returns_bl, sigma_bl
def max_qu_allocate(returns_bl, sigma_bl,d, plot=True):
ef = EfficientFrontier(returns_bl, sigma_bl)
#ef.add_objective(objective_functions.L2_reg)
ef.add_objective(L1_norm)
k, ki, u, ui = returns_bl[0], returns_bl[11], returns_bl[12], returns_bl[13]
constraints = [lambda x : x[0]+x[1]>=0.1 , lambda x : x[0]+x[1]<=0.4, lambda x : x[0]<=0.4,
lambda x : x[1]<=0.2, lambda x : x[2]<=0.2,lambda x : x[3]<=0.2,
lambda x : x[4]<=0.2, lambda x : x[5]<=0.2,lambda x : x[2]+x[3]+x[4]+x[5] <= 0.4,
lambda x : x[2]+x[3]+x[4]+x[5] >= 0.1,lambda x : x[6]<=0.5,
lambda x : x[7]<=0.4, lambda x : x[8]<=0.4,lambda x : x[8]>=0.05,
lambda x : x[6] + x[7] + x[8] >=0.2,lambda x : x[6] + x[7] + x[8] <=0.6,
lambda x : x[9]<=0.15,lambda x : x[10]<=0.15,
lambda x : x[9] + x[10]>=0.05,lambda x : x[9] + x[10]<=0.2,
lambda x : x[11]<=0.1,lambda x : x[12]<=0.2,
lambda x : x[13]<=0.2,lambda x : x[12] + x[13]<=0.2, lambda x: x[14]>=0.01]
for c in constraints:
ef.add_constraint(c)
if k > ki:
ef.add_constraint(lambda x : x[11] == 0)
if k < ki:
ef.add_constraint(lambda x : x[0] == 0)
if u < ui:
ef.add_constraint(lambda x : x[12] == 0)
if u > ui:
ef.add_constraint(lambda x : x[13] == 0)
ef.max_quadratic_utility(risk_aversion=d)
final_qu = ef.clean_weights(rounding=4)
if plot:
plt.rcParams["font.family"] = 'NanumGothic'
pd.Series(final_qu).plot.pie(figsize=(10,10));
return final_qu
def max_sharpe_allocate(returns_bl, sigma_bl, plot=True):
ef = EfficientFrontier(returns_bl, sigma_bl)
#ef.add_objective(objective_functions.L2_reg)
ef.add_objective(L1_norm)
k, ki, u, ui = returns_bl[0], returns_bl[11], returns_bl[12], returns_bl[13]
constraints = [lambda x : x[0]+x[1]>=0.1 , lambda x : x[0]+x[1]<=0.4, lambda x : x[0]<=0.4,
lambda x : x[1]<=0.2, lambda x : x[2]<=0.2,lambda x : x[3]<=0.2,
lambda x : x[4]<=0.2, lambda x : x[5]<=0.2,lambda x : x[2]+x[3]+x[4]+x[5] <= 0.4,
lambda x : x[2]+x[3]+x[4]+x[5] >= 0.1,lambda x : x[6]<=0.5,
lambda x : x[7]<=0.4, lambda x : x[8]<=0.4,lambda x : x[8]>=0.05,
lambda x : x[6] + x[7] + x[8] >=0.2,lambda x : x[6] + x[7] + x[8] <=0.6,
lambda x : x[9]<=0.15,lambda x : x[10]<=0.15,
lambda x : x[9] + x[10]>=0.05,lambda x : x[9] + x[10]<=0.2,
lambda x : x[11]<=0.1,lambda x : x[12]<=0.2,
lambda x : x[13]<=0.2,lambda x : x[12] + x[13]<=0.2, lambda x: x[14]>=0.01]
for c in constraints:
ef.add_constraint(c)
if k > ki:
ef.add_constraint(lambda x : x[11] == 0)
if k < ki:
ef.add_constraint(lambda x : x[0] == 0)
if u < ui:
ef.add_constraint(lambda x : x[12] == 0)
if u > ui:
ef.add_constraint(lambda x : x[13] == 0)
ef.max_sharpe()
final_sharpe = ef.clean_weights(rounding=4)
if plot:
plt.rcParams["font.family"] = 'NanumGothic'
pd.Series(final_sharpe).plot.pie(figsize=(10,10))
return final_sharpe
def make_graph(df, year, month, day):
try:
os.mkdir('{}'.format(str(datetime.datetime(year,month,day))[:10]))
except:
print("FAIL")
pass
for name in df.columns:
df[name].plot(title=name)
plt.savefig('./{}/{}.png'.format(str(datetime.datetime(year,month,day))[:10], name), dpi=200)
plt.show()
for name in df.columns:
df[name][-30:].plot(title=name)
res = sp.stats.linregress(np.arange(len(df[name].values[-10:])), df[name].values[-10:])
plt.plot(df[name].index.values[-10:], res.slope * np.arange(len(df[name].values[-10:])) + res.intercept, lw=5)
plt.savefig('./{}/{}.png'.format(str(datetime.datetime(year,month,day))[:10], name + '_momentum'), dpi=200)
plt.show()
def lr_slope(df):
t = df
x = np.arange(len(t))
res = sp.stats.linregress(x, t)
return res.slope
def lr_intercept(df):
t = df
x = np.arange(len(t))
res = sp.stats.linregress(x, t)
return res.intercept
def lr_stderr(df):
t = df
x = np.arange(len(t))
res = sp.stats.linregress(x, t)
return res.stderr
def sharpe_strategy(data, date, window, weight, count):
df = data.rolling(window).apply(sharpe_ratio).dropna()
cond_lower = df.iloc[window -1:] <= (df.rolling(window).mean().dropna() - df.rolling(window).std().dropna()) * weight
#cond_upper = df.iloc[window-1:] >= (df.rolling(window).mean().dropna() + df.rolling(window).std().dropna()) * weight
cond = (cond_lower).sum(axis=1)
return data.loc[date:][cond >= count]
def momentum_strategy(data, date, window, weight, count):
pred = (data.rolling(window).apply(lr_slope)*(window-1)) + data.rolling(window).apply(lr_intercept)
cond_lower = data.iloc[window-1:] <= pred.dropna() - data.rolling(window).apply(lr_stderr).dropna() * weight
#cond_upper = data.iloc[window-1:] >= pred.dropna() + data.rolling(window).apply(lr_stderr).dropna() * weight
cond = (cond_lower).sum(axis=1)
# date는 실제 운용일 다음날부터
return data.iloc[window-1:][cond >= count].loc[date:]
def sigma_strategy(data, date, window, weight, count):
""" 하이 """
cond_lower = data.iloc[window-1:] <= data.rolling(window=window).mean().dropna() - \
weight*data.rolling(window=window).std().dropna()
#cond_upper = data.iloc[window-1:] >= data.rolling(window=window).mean().dropna() + \
# weight*data.rolling(window=window).std().dropna()
cond = (cond_lower).sum(axis=1)
#return data.iloc[window-1:][cond >= count].loc['2021-06-01':]
# date는 실제 운용일 다음날부터
return data.iloc[window-1:][cond >= count].loc[date:]
def market_return(start, end):
data = fdr.DataReader('069500', start=start, end=end)['Close']
cum_profit = (1 + data.pct_change().dropna()).cumprod()
return cum_profit
def asset_allocate(days, method, timedelta, end_y, end_m, end_d, marcap_fix=False):
end_date = datetime.datetime(end_y, end_m, end_d)
start_date = end_date - datetime.timedelta(timedelta)
if len(str(end_m)) == 1 :
date_m= '0' + str(end_m)
else:
date_m = str(end_m)
if len(str(end_d)) == 1:
date_d = '0' + str(end_d)
else:
date_d = str(end_d)
if marcap_fix:
info = load_info('0531')
else:
info = load_info(date_m + date_d)
marcap = info[['name','marcap']]
df = load_data(start_date, end_date)
market = load_data(start_date, end_date, 'market')
sigma, d, marcap_dict, market_prior = bl_prior(df, market, marcap)
view, confidence = bl_investors_view(df,method, days, sigma, display_rank=False)
returns_bl, sigma_bl = bl_posterior(sigma, market_prior,view, confidence, marcap_dict, d, plot_return=False)
first_final_sharpe = max_sharpe_allocate(returns_bl, sigma_bl, plot=False)
return first_final_sharpe
def main_backtest(kind, method, first_weights, momentum_days, freq, ub,lb, date, windows, weights, counts, start_year, start_month, start_day, end_year,end_month,end_day,marcap_fix=False):
"""kind : 리밸런싱 기준 sigma/momentum/sharpe
date : 첫 운용일 다음 날
freq : 4나 5권장
method : investor's view를 모델링할 방법
momentum_days : investor's view를 모델링할 때 사용할 window size
marcap_fix : marcap 데이터가 없을 때.
"""
cases = list(product(windows, weights, counts))
final_result = {}
for window, weight, count in tqdm(cases):
if kind=='sigma':
dff = load_data(datetime.datetime(start_year, start_month, start_day)-datetime.timedelta(window + (window//5)*2), datetime.datetime(end_year, end_month, end_day))
result = sigma_strategy(dff, date, window, weight, count)
if kind=='momentum':
dff = load_data(datetime.datetime(start_year, start_month, start_day)-datetime.timedelta(window + (window//5)*2), datetime.datetime(end_year, end_month, end_day))
result = momentum_strategy(dff, date, window, weight, count)
if kind == 'sharpe':
dff = load_data(datetime.datetime(start_year, start_month, start_day)-datetime.timedelta((window + (window//5)*2)*2), datetime.datetime(end_year, end_month, end_day))
result = sharpe_strategy(dff, date, window, weight, count)
ls = result.index.tolist()
for dt in ls:
for i in range(1, freq):
nextday = dt + datetime.timedelta(days=i)
if nextday in ls:
del ls[ls.index(nextday)]
if len(ls) > ub or len(ls) <=lb :
print("too many or little reblancing at {}-{}-{}, num:{}".format(window, weight, count, len(ls)))
continue
if len(ls) == 0 :
print("No Rebalancing Signal at {}-{}-{}".format(window, weight, count))
continue
final_result['{},{},{}'.format(window, weight, count)] = []
for i in range(len(ls)):
try:
year = ls[i].year
month = ls[i].month
day = ls[i].day
year2 = ls[i+1].year
month2 = ls[i+1].month
day2 = ls[i+1].day
except:
year = ls[i].year
month = ls[i].month
day = ls[i].day
year2 = end_year
month2 = end_month
day2 = end_day
if i == 0:
#수익률 계산 부분 (5.31 ~ 6.11)
start_date = datetime.datetime(start_year, start_month, start_day)
if datetime.datetime(year, month, day).weekday() == 4:
end_date = datetime.datetime(year, month, day) + datetime.timedelta(3)
else:
end_date = datetime.datetime(year, month, day) + datetime.timedelta(1)
test_df = load_data(start=start_date, end=end_date)
df_cum_profit = (1 + test_df.pct_change().dropna()).cumprod()
start = 10000000000 * np.array(list(dict(first_weights).values()))
cashflow = (df_cum_profit * start).sum(axis=1)
cash = (df_cum_profit.iloc[-1] * start).sum()
final_result['{},{},{}'.format(window, weight, count)].append(cash)
# Weight 계산 부분 (6.10 종가 기준) (6.16 종가 기준) (6.25 종가 기준) ... (7.15)
end_date = datetime.datetime(year, month, day)
final_sharpe = asset_allocate(momentum_days, method, 180, end_date.year, end_date.month, end_date.day, marcap_fix)
# 수익률 계산 부분
test_df = load_data(start=datetime.datetime(start_year,start_month,start_day),end=datetime.datetime.today())
# 6월 3일부터 6월 10일 + 1일까지
# 6월 12일부터 6.16+1 (17)일까지 리밸런싱한 놈으로 수익률 반영
# 6월 18일부터 6.25+1 (26)일까지 리밸런싱한 놈으로 수익률 반영
# 6월 27일부터 7.7+1 (8)일까지 리밸런싱한 놈으로 수익률 반영
#...
# 7월 17일부터 7.26+1 (27)일까지 리밸런싱한 놈으로 수익률 반영
# 7월 26+2 (28)일부터 ~
start_date = datetime.datetime(year, month, day) #6.10
end_date = datetime.datetime(year2, month2, day2) #6.16
if start_date.weekday() in [3, 4]:
start_date = start_date + datetime.timedelta(4)
else:
start_date = start_date + datetime.timedelta(2)
if end_date.weekday() == 4:
end_date = end_date + datetime.timedelta(3)
else:
end_date = end_date + datetime.timedelta(1)
if i == len(ls)-1:
end_date = datetime.datetime(end_year, end_month, end_day)
test_df = test_df.pct_change().dropna().loc[start_date:end_date]
df_cum_profit = (1 + test_df).cumprod()
if len(df_cum_profit) ==0:
print(year, month, day, window, weight, count)
continue
cash_allocated = cash * np.array(list(dict(final_sharpe).values()))
cash = (df_cum_profit.iloc[-1] * cash_allocated).sum()
cashflow = cashflow.append((df_cum_profit * cash_allocated).sum(axis=1))
final_result['{},{},{}'.format(window, weight, count)].append([year, month, day, cash])
final_result['{},{},{}'.format(window, weight, count)].append(final_sharpe)
final_result['{},{},{}'.format(window, weight, count)].append(cashflow)
df = {key : final_result[key][-1] for key in final_result.keys()}
df = pd.DataFrame(df)
df.to_csv(f'{datetime.datetime.today().date()}.csv')
return final_result, df