-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathdemo.py
399 lines (319 loc) · 14.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import os.path as osp
import glob
from lib.core.config import BASE_DATA_DIR
from lib.models.smpl import SMPL, SMPL_MODEL_DIR
os.environ['PYOPENGL_PLATFORM'] = 'egl'
import cv2
import time
import torch
import joblib
import shutil
import colorsys
import argparse
import random
import numpy as np
from pathlib import Path
from tqdm import tqdm
from multi_person_tracker import MPT
from torch.utils.data import DataLoader
from lib.models.tcmr import TCMR
from lib.utils.renderer import Renderer
from lib.dataset._dataset_demo import CropDataset, FeatureDataset
from lib.utils.demo_utils import (
download_youtube_clip,
convert_crop_cam_to_orig_img,
prepare_rendering_results,
video_to_images,
images_to_video,
)
MIN_NUM_FRAMES = 25
random.seed(1)
torch.manual_seed(1)
np.random.seed(1)
def main(args):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
""" Prepare input video (images) """
video_file = args.vid_file
img_dir = args.img_dir
if not os.path.isfile(video_file) and not os.path.isdir(img_dir):
exit(f"Input video \'{video_file}\' nor input images \'{img_dir}\' does not exist!")
if os.path.isfile(video_file):
if video_file.startswith('https://www.youtube.com'):
print(f"Donwloading YouTube video \'{video_file}\'")
video_file = download_youtube_clip(video_file, '/tmp')
if video_file is None:
exit('Youtube url is not valid!')
print(f"YouTube Video has been downloaded to {video_file}...")
output_path = osp.join('./output/demo_output', os.path.basename(video_file).replace('.mp4', ''))
vid_name = os.path.basename(video_file)
Path(output_path).mkdir(parents=True, exist_ok=True)
image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)
else:
output_path = osp.join('./output/demo_output', os.path.basename(img_dir))
vid_name = os.path.basename(img_dir)
Path(output_path).mkdir(parents=True, exist_ok=True)
# image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)
image_folder = img_dir
images = glob.glob(img_dir + '/*')
num_frames = len(images)
img_shape = cv2.imread(images[0]).shape
print(f"Input video number of frames {num_frames}\n")
orig_height, orig_width = img_shape[:2]
""" Run tracking """
total_time = time.time()
bbox_scale = 1.2
# run multi object tracker
mot = MPT(
device=device,
batch_size=args.tracker_batch_size,
display=args.display,
detector_type=args.detector,
output_format='dict',
yolo_img_size=args.yolo_img_size,
)
tracking_results = mot(image_folder)
# remove tracklets if num_frames is less than MIN_NUM_FRAMES
for person_id in list(tracking_results.keys()):
if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
del tracking_results[person_id]
""" Get TCMR model """
seq_len = 16
model = TCMR(
seqlen=seq_len,
n_layers=2,
hidden_size=1024
).to(device)
# Load pretrained weights
pretrained_file = args.model
ckpt = torch.load(pretrained_file)
print(f"Load pretrained weights from \'{pretrained_file}\'")
ckpt = ckpt['gen_state_dict']
model.load_state_dict(ckpt, strict=False)
# Change mesh gender
gender = args.gender # 'neutral', 'male', 'female'
model.regressor.smpl = SMPL(
SMPL_MODEL_DIR,
batch_size=64,
create_transl=False,
gender=gender
).cuda()
model.eval()
# Get feature_extractor
from lib.models.spin import hmr
hmr = hmr().to(device)
checkpoint = torch.load(osp.join(BASE_DATA_DIR, 'spin_model_checkpoint.pth.tar'))
hmr.load_state_dict(checkpoint['model'], strict=False)
hmr.eval()
""" Run TCMR on each person """
print("\nRunning TCMR on each person tracklet...")
tcmr_time = time.time()
tcmr_results = {}
for person_id in tqdm(list(tracking_results.keys())):
bboxes = joints2d = None
bboxes = tracking_results[person_id]['bbox']
frames = tracking_results[person_id]['frames']
# Prepare static image features
dataset = CropDataset(
image_folder=image_folder,
frames=frames,
bboxes=bboxes,
joints2d=joints2d,
scale=bbox_scale,
)
bboxes = dataset.bboxes
frames = dataset.frames
has_keypoints = True if joints2d is not None else False
crop_dataloader = DataLoader(dataset, batch_size=256, num_workers=16)
with torch.no_grad():
feature_list = []
for i, batch in enumerate(crop_dataloader):
if has_keypoints:
batch, nj2d = batch
norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))
batch = batch.to(device)
feature = hmr.feature_extractor(batch.reshape(-1,3,224,224))
feature_list.append(feature.cpu())
del batch
feature_list = torch.cat(feature_list, dim=0)
# Encode temporal features and estimate 3D human mesh
dataset = FeatureDataset(
image_folder=image_folder,
frames=frames,
seq_len=seq_len,
)
dataset.feature_list = feature_list
dataloader = DataLoader(dataset, batch_size=64, num_workers=32)
with torch.no_grad():
pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []
for i, batch in enumerate(dataloader):
if has_keypoints:
batch, nj2d = batch
norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))
batch = batch.to(device)
output = model(batch)[0][-1]
pred_cam.append(output['theta'][:, :3])
pred_verts.append(output['verts'])
pred_pose.append(output['theta'][:, 3:75])
pred_betas.append(output['theta'][:, 75:])
pred_joints3d.append(output['kp_3d'])
pred_cam = torch.cat(pred_cam, dim=0)
pred_verts = torch.cat(pred_verts, dim=0)
pred_pose = torch.cat(pred_pose, dim=0)
pred_betas = torch.cat(pred_betas, dim=0)
pred_joints3d = torch.cat(pred_joints3d, dim=0)
del batch
# # TEMP
# pred_cam_t = torch.stack([pred_cam[:, 1], pred_cam[:, 2], 2 * 5000. / (224. * pred_cam[:, 0] + 1e-9)], dim=-1)
# print("pred_cam_t: ", pred_cam_t.mean(dim=0))
# ========= Save results to a pickle file ========= #
pred_cam = pred_cam.cpu().numpy()
pred_verts = pred_verts.cpu().numpy()
pred_pose = pred_pose.cpu().numpy()
pred_betas = pred_betas.cpu().numpy()
pred_joints3d = pred_joints3d.cpu().numpy()
bboxes[:, 2:] = bboxes[:, 2:] * 1.2
if args.render_plain:
pred_cam[:,0], pred_cam[:,1:] = 1, 0 # np.array([[1, 0, 0]])
orig_cam = convert_crop_cam_to_orig_img(
cam=pred_cam,
bbox=bboxes,
img_width=orig_width,
img_height=orig_height
)
output_dict = {
'pred_cam': pred_cam, # scale and 3D xy translation to project on the 224x224 cropped image
'orig_cam': orig_cam, # scale and 3D xy translation to project on the original image
'verts': pred_verts, # 6890 vertices cooordinbates
'pose': pred_pose, # SMPL pose parameters
'betas': pred_betas, # SMPL shape parameters
'joints3d': pred_joints3d, # 49 joints
'joints2d': joints2d, # 49 joints
'bboxes': bboxes, # bounding box in original image space
'frame_ids': frames, # indices of frames
}
tcmr_results[person_id] = output_dict
del model
end = time.time()
fps = num_frames / (end - tcmr_time)
print(f'TCMR FPS: {fps:.2f}')
total_time = time.time() - total_time
print(f'Total time spent: {total_time:.2f} seconds (including model loading time).')
print(f'Total FPS (including model loading time): {num_frames / total_time:.2f}.')
if args.save_pkl:
print(f"Saving output results to \'{os.path.join(output_path, 'tcmr_output.pkl')}\'.")
joblib.dump(tcmr_results, os.path.join(output_path, "tcmr_output.pkl"))
""" Render results as a single video """
renderer = Renderer(resolution=(orig_width, orig_height), orig_img=True, wireframe=args.wireframe)
output_img_folder = f'{image_folder}_output'
input_img_folder = f'{image_folder}_input'
os.makedirs(output_img_folder, exist_ok=True)
os.makedirs(input_img_folder, exist_ok=True)
print(f"\nRendering output video, writing frames to {output_img_folder}")
# prepare results for rendering
frame_results = prepare_rendering_results(tcmr_results, num_frames)
mesh_color = {k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0) for k in tcmr_results.keys()}
image_file_names = sorted([
os.path.join(image_folder, x)
for x in os.listdir(image_folder)
if x.endswith('.png') or x.endswith('.jpg')
])
for frame_idx in tqdm(range(len(image_file_names))):
img_fname = image_file_names[frame_idx]
img = cv2.imread(img_fname)
input_img = img.copy()
if args.render_plain:
img[:] = 0
if args.sideview:
side_img = np.zeros_like(img)
for person_id, person_data in frame_results[frame_idx].items():
frame_verts = person_data['verts']
frame_cam = person_data['cam']
mesh_filename = None
if args.save_obj:
mesh_folder = os.path.join(output_path, 'meshes', f'{person_id:04d}')
Path(mesh_folder).mkdir(parents=True, exist_ok=True)
mesh_filename = os.path.join(mesh_folder, f'{frame_idx:06d}.obj')
mc = mesh_color[person_id]
img = renderer.render(
img,
frame_verts,
cam=frame_cam,
color=mc,
mesh_filename=mesh_filename,
)
if args.sideview:
side_img = renderer.render(
side_img,
frame_verts,
cam=frame_cam,
color=mc,
angle=270,
axis=[0,1,0],
)
if args.sideview:
img = np.concatenate([img, side_img], axis=1)
# save output frames
cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.jpg'), img)
cv2.imwrite(os.path.join(input_img_folder, f'{frame_idx:06d}.jpg'), input_img)
if args.display:
cv2.imshow('Video', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if args.display:
cv2.destroyAllWindows()
""" Save rendered video """
save_output_name = f'tcmr_{vid_name.replace(".mp4", "")}_output.mp4'
save_output_path = os.path.join(output_path, save_output_name)
save_input_name = f'tcmr_{vid_name.replace(".mp4", "")}_input.mp4'
save_input_path = os.path.join(output_path, save_input_name)
images_to_video(img_folder=output_img_folder, output_vid_file=save_output_path)
images_to_video(img_folder=input_img_folder, output_vid_file=save_input_path)
print(f"Saving result video to {os.path.abspath(save_output_path)}")
shutil.rmtree(output_img_folder)
shutil.rmtree(input_img_folder)
if os.path.isfile(video_file):
shutil.rmtree(image_folder)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--img_dir', type=str, default='', help='input images path')
parser.add_argument('--vid_file', type=str, default='sample_video.mp4', help='input video path or youtube link')
parser.add_argument('--model', type=str, default='./data/base_data/tcmr_demo_model.pth.tar', help='path to pretrained model weight')
parser.add_argument('--detector', type=str, default='yolo', choices=['yolo', 'maskrcnn'],
help='object detector to be used for bbox tracking')
parser.add_argument('--yolo_img_size', type=int, default=416,
help='input image size for yolo detector')
parser.add_argument('--tracker_batch_size', type=int, default=12,
help='batch size of object detector used for bbox tracking')
parser.add_argument('--display', action='store_true',
help='visualize the results of each step during demo')
parser.add_argument('--save_pkl', action='store_true',
help='save results to a pkl file')
parser.add_argument('--save_obj', action='store_true',
help='save results as .obj files.')
parser.add_argument('--gender', type=str, default='neutral',
help='set gender of people from (neutral, male, female)')
parser.add_argument('--wireframe', action='store_true',
help='render all meshes as wireframes.')
parser.add_argument('--sideview', action='store_true',
help='render meshes from alternate viewpoint.')
parser.add_argument('--render_plain', action='store_true',
help='render meshes on plain background')
parser.add_argument('--gpu', type=int, default='1', help='gpu num')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
main(args)