-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict_Sentiment.py
66 lines (45 loc) · 2.11 KB
/
Predict_Sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 25 16:56:01 2019
@author: Sakshu
"""
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import TimeSeriesSplit
from sklearn import linear_model,svm, preprocessing
import import_ipynb
from GetHistoricalData import find_data
from SentimentData.GetSentimentData import senti_data
def processing(data):
# selecting Feature Columns
feature_columns=['Prev Close','Open', 'High', 'Low', 'Volume', 'Turnover', 'Score']
scaler = MinMaxScaler()
feature_minmax_transform_data = scaler.fit_transform(data[feature_columns])
feature_minmax_transform = pd.DataFrame(columns=feature_columns, data=feature_minmax_transform_data, index=data.index)
return feature_minmax_transform
def split_data(data, target):
ts_split= TimeSeriesSplit(n_splits=2)
for train_index, test_index in ts_split.split(data):
X_train, X_test = data[:len(train_index)], data[len(train_index): (len(train_index)+len(test_index))]
y_train, y_test = target[:len(train_index)].values.ravel(), target[len(train_index): (len(train_index)+len(test_index))].values.ravel()
return [X_train, X_test, y_train, y_test]
def build_model(X_train, y_train):
lm = svm.SVR(max_iter=20,C=0.1)
model_SVM= lm.fit(X_train, y_train)
return model_SVM
def call_senti(symbol):
# symbol= 'RELIANCE'
find_data(symbol, '2019-11-05')
senti_data(symbol)
df = pd.read_csv('Data/'+symbol+"_merged_Data.csv",na_values=['null'],index_col='Date',parse_dates=True,infer_datetime_format=True)
columns=['Prev Close','Open', 'High', 'Low', 'Close', 'Volume', 'Turnover', 'Score']
df_final= df[columns]
test = df_final
target = pd.DataFrame(test['Close'])
feature_minmax_transform= processing(test)
# Shift target array because we want to predict the n + 1 day value
target = target.shift(-1)
X_train, X_test, y_train, y_test= split_data(feature_minmax_transform, target)
model= build_model(X_train, y_train)
y_pred= model.predict(X_test)
return y_pred[-1]