-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
159 lines (131 loc) · 5.49 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
# desired depth layers to compute style/content losses :
content_layers_default = ["conv4_2"]
style_layers_default = ['relu1_1', 'relu2_1',
'relu3_1', 'relu4_1', 'relu5_1']
class ContentLoss(nn.Module):
def __init__(
self, target,
):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
class TotalVariationLoss(nn.Module):
def __init__(self):
super(TotalVariationLoss, self).__init__()
def forward(self, input):
b, c, h, w = input.size()
w_variance = torch.sum(torch.abs(input[:, :, :, :-1] - input[:, :, :, 1:]) / 256.0)
h_variance = torch.sum(torch.abs(input[:, :, :-1, :] - input[:, :, 1:, :]) / 256.0)
self.loss = (w_variance + h_variance)
return input
# create a module to normalize input image so we can easily put it in a
# nn.Sequential
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
# TODO: maybe refactor this monstrous function
def build_model_and_losses(
device,
style_img,
content_img,
use_avg_pool=True,
content_layers=content_layers_default,
style_layers=style_layers_default,
):
cnn = models.vgg19(pretrained=True).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# normalization module
normalization = Normalization(cnn_normalization_mean, cnn_normalization_std).to(device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
tv_loss = None
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
tv_loss = TotalVariationLoss()
model.add_module("total_variation_loss", tv_loss)
i = 1 # increment every time we see a conv
j = 0 # increment every time we see a pool
style_ind = 0
content_ind = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
j += 1
name = "conv{}_{}".format(i, j)
elif isinstance(layer, nn.ReLU):
name = "relu{}_{}".format(i, j)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
if use_avg_pool:
layer = nn.AvgPool2d(layer.kernel_size)
name = "pool{}".format(i)
i += 1
j = 0
elif isinstance(layer, nn.BatchNorm2d):
name = "bn{}_{}".format(i,j)
else:
raise RuntimeError(
"Unrecognized layer: {}".format(layer.__class__.__name__)
)
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(content_ind), content_loss)
content_losses.append(content_loss)
content_ind += 1
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(style_ind), style_loss)
style_losses.append(style_loss)
style_ind += 1
# now we trim off the layers after the last content and style losses
for k in range(len(model) - 1, -1, -1):
if isinstance(model[k], ContentLoss) or isinstance(model[k], StyleLoss):
break
model = model[: (k + 1)]
return model, style_losses, content_losses, tv_loss