-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGeneticAlgorithm.java
132 lines (120 loc) · 4.76 KB
/
GeneticAlgorithm.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import domain.Day;
import domain.Schedule;
import java.util.ArrayList;
import java.util.stream.IntStream;
/**
* Genetic Algorithm
*
* @author Arjuna Jayasinghe
* @version 1.0
*/
public class GeneticAlgorithm {
private Schedule scheduleTemplate; // This object is used as a template to create individual in the population.
public GeneticAlgorithm(Schedule scheduleTemplate) {
this.scheduleTemplate = scheduleTemplate;
}
public Population evolve(Population population) {
return mutatePopulation(crossoverPopulation(population));
}
public Population crossoverPopulation(Population population) {
// Create empty population
Population crossoverPopulation = new Population(population.getSchedules().size(), this.scheduleTemplate, true);
// Keep most fittest individual without crossing. (Most fittest individuals are at the top of the list since it is sorted by fitness)
IntStream.range(0, GAConfig.ELITE_SCHEDULES).forEach(x -> crossoverPopulation.getSchedules().set(x, population.getSchedules().get(x)));
// Cross the rest of population
IntStream.range(GAConfig.ELITE_SCHEDULES, population.getSchedules().size()).forEach(x -> {
if (GAConfig.CROSSOVER_RATE > Math.random()) {
// Select parents by tournament.
Schedule parentSchedule1 = selectSchedulebyTournament(population);
Schedule parentSchedule2 = selectSchedulebyTournament(population);
// Cross them and create an offspring.
crossoverPopulation.getSchedules().set(x, crossoverSchedule(parentSchedule1, parentSchedule2));
} else {
// No crossing here.
crossoverPopulation.getSchedules().set(x, population.getSchedules().get(x));
}
});
return crossoverPopulation;
}
/**
* Creates a offspring after mating.
*
* @param parentSchedule1
* @param parentSchedule2
* @return
*/
public Schedule crossoverSchedule(Schedule parentSchedule1, Schedule parentSchedule2) {
Schedule offspringSchedule = new Schedule(scheduleTemplate).fillSchedule();
offspringSchedule.getEmployeeScheduleDays().forEach((employee, gaScheduleDays) -> {
this.geneSwap(gaScheduleDays, parentSchedule1.getEmployeeScheduleDays().get(employee), parentSchedule2.getEmployeeScheduleDays().get(employee));
});
return offspringSchedule;
}
/**
* This method performs multipoint(2 point) crossover and returns offspring.
*
* @param offspringScheduleDays
* @param parent1ScheduleDays
* @param parent2ScheduleDays
*/
private void geneSwap(Day[] offspringScheduleDays, Day[] parent1ScheduleDays, Day[] parent2ScheduleDays) {
Day[] tempScheduleDays;
for (int i = 0; i < offspringScheduleDays.length; i++) {
if (GAConfig.GENE_SWAP_RATE > Math.random()) {
// Select a parent randomly to get a gene.(Day)
if (0.5 > Math.random()) {
tempScheduleDays = parent1ScheduleDays;
} else {
tempScheduleDays = parent2ScheduleDays;
}
offspringScheduleDays[i] = tempScheduleDays[i];
}
}
}
/**
* Mutates genes randomly.
*
* @param population
* @return
*/
public Population mutatePopulation(Population population) {
// Creates empty population
Population mutatePopulation = new Population(population.getSchedules().size(), this.scheduleTemplate, false);
ArrayList<Schedule> schedules = mutatePopulation.getSchedules();
// Elites are ignored from mutation
IntStream.range(0, GAConfig.ELITE_SCHEDULES).forEach(x -> {
schedules.set(x, population.getSchedules().get(x));
});
// This schedule is used to mutation.
Schedule mutateSchedule = new Schedule(scheduleTemplate).fillSchedule();
// send others to the mutation algorithm.
IntStream.range(GAConfig.ELITE_SCHEDULES, population.getSchedules().size()).forEach(x -> {
schedules.set(x, mutateSchedule(mutateSchedule, population.getSchedules().get(x)));
});
return mutatePopulation;
}
public Schedule mutateSchedule(Schedule mutateSchedule, Schedule schedule) {
schedule.getEmployeeScheduleDays().forEach((employee, gaScheduleDays) -> {
// Select one chromosome(one employee schedule) randomly for the mutation.
if (GAConfig.MUTATION_RATE > Math.random()) {
for (int i = 0; i < gaScheduleDays.length; i++) {
if (GAConfig.MUTATION_GENE_RATE > Math.random()) {
gaScheduleDays[i] = mutateSchedule.getEmployeeScheduleDays().get(employee)[i];
}
}
}
});
return schedule;
}
public Schedule selectSchedulebyTournament(Population population) {
Population tournamentPopulation = new Population(GAConfig.TOURNAMENT_SIZE, scheduleTemplate, false);
IntStream.range(0, GAConfig.TOURNAMENT_SIZE).forEach(x -> {
tournamentPopulation.getSchedules().set(x, population.getSchedules().get((int) (Math.random() * population.getSchedules().size())));
});
tournamentPopulation.sortByFitness();
return tournamentPopulation.getFirst();
}
public Schedule getScheduleTemplate() {
return scheduleTemplate;
}
}