-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptional parameters+atac.snake
403 lines (373 loc) · 9.82 KB
/
optional parameters+atac.snake
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
REP = ['rep3', 'rep4']
READ = ['R1', 'R2']
EXTENSIONS = [1, 2, 3, 4, 'rev.1', 'rev.2']
rule all:
input:
expand('results/ATAC{rep}_{read}_fastqc.html', rep = REP, read = READ),
expand('results/ATAC_{rep}_sorted.rmchrM.bam.bai', rep = REP),
expand('results/ATAC_{rep}_sorted_idxstats.txt', rep = REP),
expand('results/ATAC_{rep}_sorted_flagstat.txt', rep = REP),
expand('results/ATAC_{rep}_nbr.bw',rep = REP),
expand('results/ATAC_{rep}_nfr.bw', rep = REP),
'results/ATAC_annotated.txt',
expand('results/ATAC_{rep}_shifted_sorted.bam.bai', rep = REP),
directory('results/enrichment'),
directory('results/meme_out/'),
rule fastqc:
input:
fastq = 'samples/ATAC{rep}_{read}.fastq.gz'
output:
fastqc = 'results/ATAC{rep}_{read}_fastqc.html'
params:
outdir = 'results/'
threads: 4
conda:
'envs/fastqc_env.yml'
shell:
'''
fastqc {input.fastq} -o {params.outdir}
'''
rule trimomatic:
input:
r1 = 'samples/ATAC{rep}_R1.fastq.gz',
r2 = 'samples/ATAC{rep}_R2.fastq.gz',
adapters = 'samples/NexteraPE-PE.fa'
output:
p1 = 'results/ATAC{rep}_R1_P.fq.gz',
u1 = 'results/ATAC{rep}_R1_U.fq.gz',
p2 = 'results/ATAC{rep}_R2_P.fq.gz',
u2 = 'results/ATAC{rep}_R2_U.fq.gz'
threads: 8
conda:
'envs/trimmomatic_env.yml'
shell:
'''
trimmomatic PE -threads {threads} \
{input.r1} {input.r2} \
{output.p1} {output.u1} {output.p2} {output.u2} \
ILLUMINACLIP:{input.adapters}:2:30:10 \
LEADING:3 \
TRAILING:3 \
SLIDINGWINDOW:4:15
'''
rule wget_unzip:
output:
'samples/GRCh38.primary_assembly.genome.fa'
params:
'samples/GRCh38.primary_assembly.genome.fa.gz'
shell:
'''
wget -P ./samples https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_45/GRCh38.primary_assembly.genome.fa.gz
gunzip {params}
'''
rule bowtie2_build_gencode:
input:
fasta = 'samples/GRCh38.primary_assembly.genome.fa'
output:
expand('results/index/GRCh38.{ext}.bt2', ext = EXTENSIONS)
params:
outdir = 'results/index/GRCh38'
threads: 16
conda:
'envs/bowtie2_env.yml'
shell:
'''
mkdir -p results/index
bowtie2-build {input.fasta} {params.outdir}
'''
rule unzip_trimmed_samples:
input:
P = 'results/ATAC{rep}_{read}_P.fq.gz',
U = 'results/ATAC{rep}_{read}_U.fq.gz'
output:
P = 'results/trimmed/ATAC{rep}_{read}_P.fq',
U = 'results/trimmed/ATAC{rep}_{read}_U.fq'
shell:
'''
mkdir -p results/trimmed
gunzip -c {input.P} > {output.P}
gunzip -c {input.U} > {output.U}
'''
rule bowtie2_align:
input:
R1P = 'results/trimmed/ATAC{rep}_R1_P.fq',
R1U = 'results/trimmed/ATAC{rep}_R1_U.fq',
R2P = 'results/trimmed/ATAC{rep}_R2_P.fq',
R2U = 'results/trimmed/ATAC{rep}_R2_U.fq'
output:
'results/ATAC_{rep}.bam'
threads: 16
params:
index = 'results/index/GRCh38'
conda:
'envs/bowtie2_env.yml'
shell:
'''
bowtie2 -x {params.index} -1 {input.R1P} -2 {input.R2P} -U {input.R1U} {input.R2U} -X | samtools view -bS - > {output}
'''
rule samtools_sort:
input:
bam = 'results/ATAC_{rep}.bam'
output:
sorted = 'results/ATAC_{rep}.sorted.bam'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools sort -o {output.sorted} {input.bam}
'''
rule samtools_idxstats:
input:
sorted = 'results/ATAC_{rep}.sorted.bam'
output:
stats = 'results/ATAC_{rep}_sorted_idxstats.txt'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools idxstats {input.sorted} > {output.stats}
'''
rule samtools_flagstats:
input:
bam = 'results/ATAC_{rep}.sorted.bam'
output:
flagstat = 'results/ATAC_{rep}_sorted_flagstat.txt'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools flagstat {input.bam} > {output.flagstat}
'''
# Check for 'chrM' entries in the idxstats file. If you have reads for chrM, remove them using the following rule
rule rm_chrM:
input:
'results/ATAC_{rep}.sorted.bam'
output:
'results/ATAC_{rep}_sorted.rmchrM.bam'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools view -h {input} | grep -v chrM | samtools sort -O bam -o {output}
'''
# Check for duplicates percentage by using the .metrics file
# rule mark_dup:
# input:
# 'results/ATAC_{rep}_sorted.rmchrM.bam'
# output:
# 'results/ATAC_{rep}_sorted.markdup.bam'
# conda:
# 'envs/picard_env.yml'
# threads: 8
# params:
# 'results/ATAC_{rep}_sorted.markdup.metrics'
# shell:
# '''
# picard MarkDuplicates I={input} O={output} M={params} REMOVE_DUPLICATES=false CREATE_INDEX=true
# '''
# Remove multimapped, duplicate and unmapped reads
# rule rm_multimap:
# input:
# 'results/ATAC_{rep}_sorted.markdup.bam'
# output:
# 'results/ATAC_{rep}_sorted.filtered.bam'
# threads: 8
# conda:
# 'envs/samtools_env.yml'
# shell:
# '''
# samtools view -h -b -f 2 -F 1548 -q 30 {input} | samtools sort -o {output}
# '''
rule samtools_idx:
input:
sorted = 'results/ATAC_{rep}_sorted.rmchrM.bam'
output:
index = 'results/ATAC_{rep}_sorted.rmchrM.bam.bai'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools index {input.sorted} {output.index}
'''
rule shiftreads:
input:
'results/ATAC_{rep}_sorted.rmchrM.bam'
output:
'results/ATAC_{rep}.shifted.bam',
conda:
'envs/deeptools_env.yml'
threads: 16
shell:
'''
alignmentSieve -p {threads} --ATACshift -b {input} -o {output}
'''
rule samtools_shifted_sort:
input:
bam = 'results/ATAC_{rep}.shifted.bam'
output:
sorted = 'results/ATAC_{rep}_shifted_sorted.bam'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools sort -o {output.sorted} {input.bam}
'''
rule samtools_shifted_idx:
input:
sorted = 'results/ATAC_{rep}_shifted_sorted.bam'
output:
index = 'results/ATAC_{rep}_shifted_sorted.bam.bai'
conda:
'envs/samtools_env.yml'
shell:
'''
samtools index {input.sorted} {output.index}
'''
# Perform atacseqqc using the `atacseqqc.R` script
rule bamCoverage:
input:
bam = 'results/ATAC_{rep}_shifted_sorted.bam'
output:
nfr_bw = 'results/ATAC_{rep}_nfr.bw',
nbr_bw = 'results/ATAC_{rep}_nbr.bw'
threads: 16
conda:
'envs/deeptools_env.yml'
params:
nfr = 99,
nbr = 100
shell:
'''
bamCoverage -b {input.bam} --maxFragmentLength {params.nfr} -o {output.nfr_bw}
bamCoverage -b {input.bam} --minFragmentLength {params.nbr} -o {output.nbr_bw}
'''
rule call_peak:
input:
'results/ATAC_{rep}.shifted.bam'
output:
'results/macs3_peaks/ATAC_{rep}_peaks.narrowPeak'
conda:
'envs/macs3.yml'
threads: 16
params:
'results/macs3_peaks'
shell:
'''
macs3 callpeak -t {input} -n ATAC_{wildcards.rep} -f BAMPE --outdir {params} --nomodel --shift -37 --extsize 73 --keep-dup all --cutoff-analysis
'''
rule intersect_peaks:
input:
peak1 = 'results/macs3_peaks/ATAC_rep3_peaks.narrowPeak',
peak2 = 'results/macs3_peaks/ATAC_rep4_peaks.narrowPeak'
output:
'results/ATAC_intersect.narrowPeak'
conda:
'envs/bedtools_env.yml'
shell:
'''
bedtools intersect -a {input.peak1} -b {input.peak2} > {output}
'''
rule filter_blacklist:
input:
intersect = 'results/ATAC_intersect.narrowPeak',
blacklist = 'samples/hg38-blacklist.v2.bed'
output:
'results/ATAC_filtered.narrowPeak'
conda:
'envs/bedtools_env.yml'
shell:
'''
bedtools intersect -v -a {input.intersect} -b {input.blacklist} > {output}
'''
rule wget_unzip_gtf:
output:
'samples/gencode.v45.primary_assembly.annotation.gtf'
params:
'samples/gencode.v45.primary_assembly.annotation.gtf.gz'
shell:
'''
wget -P ./samples https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_45/gencode.v45.primary_assembly.annotation.gtf.gz
gunzip {params}
'''
# Before doing HOMER GO enrichment, check if the organism related files are present and updated.
# If not, update using perl /path-to-homer/configureHomer.pl -install human
rule annotate_peaks:
input:
bf = 'results/ATAC_filtered.narrowPeak',
gtf = 'samples/gencode.v45.primary_assembly.annotation.gtf'
output:
annotate = 'results/ATAC_annotated.txt',
enrichment = directory('results/enrichment')
conda:
'envs/homer_env.yml'
threads: 8
shell:
'''
annotatePeaks.pl {input.bf} hg38 -gtf {input.gtf} -go {output.enrichment} > {output.annotate}
'''
rule meme_ref:
output:
'hg38_masked.fa'
params:
'samples/hg38.chromFaMasked.tar.gz'
shell:
'''
wget -P ./samples https://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chromFaMasked.tar.gz
tar xvzf {params}
cat ./maskedChroms/* > {output}
'''
rule top1000_centered_peaks:
input:
fil = 'results/ATAC_filtered.narrowPeak',
fa = 'hg38_masked.fa'
output:
centered = 'results/ATAC_centered.bed'
params:
sig = 'results/ATAC_sorted.narrowPeak',
sort = 'results/ATAC_sorted_1000.bed'
shell:
'''
sort -k9nr {input.fil} > {params.sig}
head -1000 {params.sig} > {params.sort}
awk 'BEGIN{{ OFS="\t";}}{{ midPos=$2+$10; print $1, midPos-350, midPos+350; }}' {params.sort} > {output.centered}
'''
rule fastafrombed:
input:
bed = 'results/ATAC_centered.bed',
fa = 'hg38_masked.fa'
output:
'results/top1000_centered_seq.fa'
conda:
'envs/bedtools_env.yml'
threads: 8
shell:
'''
bedtools getfasta -fo {output} -fi {input.fa} -bed {input.bed}
'''
rule bg_model:
input:
'results/top1000_centered_seq.fa'
output:
'results/meme_bg.model'
conda:
'envs/meme_env.yml'
threads: 4
shell:
'''
fasta-get-markov -m 2 -dna -nostatus -nosummary {input} {output}
'''
rule meme_chip:
input:
fa = 'results/top1000_centered_seq.fa',
bg = 'results/meme_bg.model'
output:
directory('results/meme_out/')
conda:
'envs/meme_env.yml'
threads: 8
shell:
'''
wget -P ./samples https://meme-suite.org/meme/meme-software/Databases/motifs/motif_databases.12.24.tgz
tar -xvzf samples/motif_databases.12.24.tgz
meme-chip -oc {output} -dna -bfile {input.bg} -order 2 -meme-norand -meme-mod zoops -meme-nmotifs 10 -minw 6 -maxw 30 -meme-p {threads} -ccut 0 -db motif_databases/JASPAR/JASPAR2022_CORE_vertebrates_redundant_v2.meme -db motif_databases/JASPAR/JASPAR2022_CORE_vertebrates_non-redundant_v2.meme -db motif_databases/HUMAN/HOCOMOCOv11_core_HUMAN_mono_meme_format.meme {input.fa}
'''