forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPointInsideTriangle.java
97 lines (79 loc) · 3.3 KB
/
PointInsideTriangle.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/**
* This file shows you how to determine if a point is inside or on the boundary of a triangle formed
* by three points.
*
* <p>Time Complexity: O(1)
*
* @author William Fiset, william.alexandre.fiset@gmail.com
*/
package com.williamfiset.algorithms.geometry;
import static java.lang.Math.*;
import java.awt.geom.Point2D;
public class PointInsideTriangle {
private static final double EPS = 1e-8;
// Determine if the point 'p' lies inside or exactly on the border of the
// triangle formed by the three points a,b,c. If you do want to exclude
// the border modify this method so that instead of checking against '<=' and
// '>=' it checks against strictly less than and strictly greater than.
public static boolean pointInsideTriangle(Point2D a, Point2D b, Point2D c, Point2D p) {
// Points a,b,c form a degenerate triangle
if (collinear(a, b, c) == 0) {
throw new IllegalArgumentException("points a,b,c do not form a triangle!");
}
// Compute the directions the point 'p' is relative to
// the three half planes formed by the points of the triangle
int dir1 = collinear(a, b, p);
int dir2 = collinear(b, c, p);
int dir3 = collinear(c, a, p);
// Check if two of the half planes overlap in
// the area where the triangle is found.
return (dir1 <= 0 && dir2 <= 0 && dir3 <= 0) || (dir1 >= 0 && dir2 >= 0 && dir3 >= 0);
}
// A slightly more optimized version which does less comparisons.
public static boolean pointInsideTriangle2(Point2D a, Point2D b, Point2D c, Point2D p) {
// Points a,b,c form a degenerate triangle
if (collinear(a, b, c) == 0) {
throw new IllegalArgumentException("points a,b,c do not form a triangle!");
}
// Change '<' to '<=' to exclude points on the boundary
boolean dir1 = collinear(a, b, p) < 0;
boolean dir2 = collinear(b, c, p) < 0;
boolean dir3 = collinear(c, a, p) < 0;
return (dir1 == dir2) && (dir2 == dir3);
}
// Suppose a != b and the points a & b form an infinite line and we want
// to determine if c is a point on that line. This method returns 0 if
// it is on the line, -1 if c is to the right of the line and +1 if it's
// to the left from the frame of reference of standing at point a
// and facing point b.
private static int collinear(Point2D a, Point2D b, Point2D c) {
double ax = a.getX(), ay = a.getY();
double bx = b.getX(), by = b.getY();
double cx = c.getX(), cy = c.getY();
double area = (bx - ax) * (cy - ay) - (by - ay) * (cx - ax);
if (abs(area) < EPS) return 0;
return (int) signum(area);
}
public static void main(String[] args) {
Point2D a = new Point2D.Double(0, 5);
Point2D b = new Point2D.Double(0, 0);
Point2D c = new Point2D.Double(5, 0);
for (int i = -2; i < 7; i++) {
for (int j = -2; j < 7; j++) {
Point2D p = new Point2D.Double(i, j);
if (pointInsideTriangle(a, b, c, p)) {
System.out.printf("(%.3f,%.3f) is inside the triangle\n", p.getX(), p.getY());
}
}
}
System.out.println();
for (int i = -2; i < 7; i++) {
for (int j = -2; j < 7; j++) {
Point2D p = new Point2D.Double(i, j);
if (pointInsideTriangle2(a, b, c, p)) {
System.out.printf("(%.3f,%.3f) is inside the triangle\n", p.getX(), p.getY());
}
}
}
}
}