-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtwitter_topic_avg_sentiment_val.py
41 lines (28 loc) · 1.3 KB
/
twitter_topic_avg_sentiment_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
import json
import sys
from pyspark.sql.types import *
def fun(avg_senti_val):
try:
if avg_senti_val < 0: return 'NEGATIVE'
elif avg_senti_val == 0: return 'NEUTRAL'
else: return 'POSITIVE'
except TypeError:
return 'NEUTRAL'
if __name__ == "__main__":
schema = StructType([
StructField("text", StringType(), True),
StructField("senti_val", DoubleType(), True)
])
spark = SparkSession.builder.appName("TwitterSentimentAnalysis").getOrCreate()
kafka_df = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe", "twitter").load()
kafka_df_string = kafka_df.selectExpr("CAST(value AS STRING)")
tweets_table = kafka_df_string.select(from_json(col("value"), schema).alias("data")).select("data.*")
sum_val_table = tweets_table.select(avg('senti_val').alias('avg_senti_val'))
# udf = USER DEFINED FUNCTION
udf_avg_to_status = udf(fun, StringType())
# avarage of senti_val column to status column
new_df = sum_val_table.withColumn("status", udf_avg_to_status("avg_senti_val"))
query = new_df.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()