-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlbph.go
254 lines (211 loc) · 7.3 KB
/
lbph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// lbph package provides a texture classification using local binary patterns.
package lbph
import (
"errors"
"image"
_ "image/gif"
_ "image/jpeg"
_ "image/png"
"github.com/kelvins/lbph/histogram"
"github.com/kelvins/lbph/lbp"
"github.com/kelvins/lbph/metric"
)
// TrainingData struct is used to store the input data (images and labels)
// and each calculated histogram.
type TrainingData struct {
Images []image.Image
Labels []string
Histograms [][]float64
}
// Params struct is used to pass the LBPH parameters.
type Params struct {
Radius uint8
Neighbors uint8
GridX uint8
GridY uint8
}
// trainData struct stores the TrainingData loaded by the user.
// It needs to be a pointer because the first state will be nil.
// This field should not be exported because it is "read only".
var trainingData = &TrainingData{}
// lbphParams struct stores the LBPH parameters.
// It is not a pointer, so it will never be nil.
// This field should not be exported because the user cannot change
// the LBPH parameters after training the algorithm. To change the
// parameters we need to call Init that will "reset" the training data.
var lbphParams = Params{}
// The metric used to compare the histograms in the Predict step.
var Metric string
// init define the default state of some variables.
// It will set the default parameters for the LBPH,
// set the trainingData to nil and define the default
// metric (in this case ChiSquare).
func init() {
// Define the default LBPH parameters.
lbphParams = Params{
Radius: 1,
Neighbors: 8,
GridX: 8,
GridY: 8,
}
// As the trainData is a pointer, the initial state can be nil.
trainingData = nil
// Use the EuclideanDistance as the default metric.
Metric = metric.EuclideanDistance
}
// Init function is used to set the LBPH parameters based on the Params structure.
// It is needed to set the default parameters if something is wrong and
// to reset the trainingData when new parameters are defined.
func Init(params Params) {
// If some parameter is wrong (== 0) set the default one.
// As the data type is uint8 we don't need to check if it is lower than 0.
if params.Radius == 0 {
params.Radius = 1
}
if params.Neighbors == 0 {
params.Neighbors = 8
}
if params.GridX == 0 {
params.GridX = 8
}
if params.GridY == 0 {
params.GridY = 8
}
// Set the LBPH Params
lbphParams = params
// Every time the Init function is called the training data will be
// reset, so the user needs to train the algorithm again.
trainingData = nil
}
// GetTrainingData is used to get the trainingData struct.
// The user can use it to access the images, labels and histograms.
func GetTrainingData() TrainingData {
// Returns the data structure pointed by trainData.
return *trainingData
}
// checkImagesSizes function is used to check if all images have the same size.
func checkImagesSizes(images []image.Image) error {
// Check if the slice is empty
if len(images) == 0 {
return errors.New("The images slice is empty")
}
// Check if the first image is nil
if images[0] == nil {
return errors.New("At least one image in the slice is nil")
}
// Get the image size from the first image
defaultWidth, defaultHeight := lbp.GetImageSize(images[0])
// Check if the size is valid
// This condition should never happen because
// we already tested if the image was nil
if defaultWidth <= 0 || defaultHeight <= 0 {
return errors.New("At least one image have an invalid size")
}
// Check each image in the slice
for index := 0; index < len(images); index++ {
// Check if the current image is nil
if images[index] == nil {
return errors.New("At least one image in the slice is nil")
}
// Get the size from the current image
width, height := lbp.GetImageSize(images[index])
// Check if all images have the same size
if width != defaultWidth || height != defaultHeight {
return errors.New("One or more images have different sizes")
}
}
// No error has occurred, return nil
return nil
}
// Train function is used for training the LBPH algorithm based on the
// images and labels passed by parameter. It basically checks the input
// data, calculates the LBP operation and gets the histogram of each image.
func Train(images []image.Image, labels []string) error {
// Clear the data structure
trainingData = nil
// Check if the slices are not empty.
if len(images) == 0 || len(labels) == 0 {
return errors.New("At least one of the slices is empty")
}
// Check if the images and labels slices have the same size.
if len(images) != len(labels) {
return errors.New("The slices have different sizes")
}
// Call the CheckImagesSizes from the common package.
// It will check if all images have the same size.
err := checkImagesSizes(images)
if err != nil {
return err
}
// Calculates the LBP operation and gets the histograms for each image.
var histograms [][]float64
for index := 0; index < len(images); index++ {
// Calculate the LBP operation for the current image.
pixels, err := lbp.Calculate(images[index], lbphParams.Radius, lbphParams.Neighbors)
if err != nil {
return err
}
// Get the histogram from the current image.
hist, err := histogram.Calculate(pixels, lbphParams.GridX, lbphParams.GridY)
if err != nil {
return err
}
// Store the histogram in the 'matrix' (slice of slice).
histograms = append(histograms, hist)
}
// Store the current data that we are working on.
trainingData = &TrainingData{
Images: images,
Labels: labels,
Histograms: histograms,
}
// Everything is ok, return nil.
return nil
}
// Predict function is used to find the closest image based on the images used in the training step.
func Predict(img image.Image) (string, float64, error) {
// Check if we have data in the trainingData struct.
if trainingData == nil {
return "", 0.0, errors.New("The algorithm was not trained yet")
}
// Check if the image passed by parameter is nil.
if img == nil {
return "", 0.0, errors.New("The image passed by parameter is nil")
}
// If we don't have histograms to compare, probably the Train function was
// not called or has occurred an error and it was not correctly treated.
if len(trainingData.Histograms) == 0 {
return "", 0.0, errors.New("There are no histograms in the trainData")
}
// Calculate the LBP operation.
pixels, err := lbp.Calculate(img, lbphParams.Radius, lbphParams.Neighbors)
if err != nil {
return "", 0.0, err
}
// Calculate the histogram for the image.
hist, err := histogram.Calculate(pixels, lbphParams.GridX, lbphParams.GridY)
if err != nil {
return "", 0.0, err
}
// Search for the closest histogram based on the histograms calculated in the training step.
minDistance, err := histogram.Compare(hist, trainingData.Histograms[0], Metric)
if err != nil {
return "", 0.0, err
}
minIndex := 0
for index := 1; index < len(trainingData.Histograms); index++ {
// Calculate the distance from the current histogram.
distance, err := histogram.Compare(hist, trainingData.Histograms[index], Metric)
if err != nil {
return "", 0.0, err
}
// If it is closer, save the minDistance and the index.
if distance < minDistance {
minDistance = distance
minIndex = index
}
}
// Return the label corresponding to the closest histogram,
// the distance (minDistance) and the error (nil).
return trainingData.Labels[minIndex], minDistance, nil
}