-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaes.py
282 lines (213 loc) · 7.17 KB
/
saes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
S_BOX = [
[0x9, 0x4, 0xa, 0xb],
[0xd, 0x1, 0x8, 0x5],
[0x6, 0x2, 0x0, 0x3],
[0xc, 0xe, 0xf, 0x7]
]
S_BOX_INVERSE = [
[0xa, 0x5, 0x9, 0xb],
[0x1, 0x7, 0x8, 0xf],
[0x6, 0x0, 0x2, 0x3],
[0xc, 0x4, 0xd, 0xe]
]
def sub_nibbles(state, box):
"""
Substitutes the nibbles in the state matrix using a given box
:param state: The state matrix
:param box: The box to use for substitution. Either S_BOX or S_BOX_INVERSE
:returns: The state matrix with substituted nibbles
"""
for i in range(len(state)):
for j in range(len(state[i])):
# Grabbing the highest 2 bits of a nibble
high = (state[i][j] >> 2) & 0b11
# Grabbing the lowest 2 bits of a nibble
low = state[i][j] & 0b11
# Substituing the nibble in the state with one from the box
state[i][j] = box[high][low]
# Our state is now substituted
return state
def shift_rows(state):
"""
Shifts the rows of the state matrix to the left. The amount of shifting is determined by the row number
:param state: The state matrix
:returns: The state matrix with shifted rows
"""
for i in range(len(state)):
state[i] = state[i][i:] + state[i][:i]
return state
def shift_rows_inverse(state):
"""
Shifts the rows of the state matrix back to its original state.
:param state: The state matrix
:returns: The state matrix with shifted rows
"""
for i in range(len(state)):
state[i] = state[i][-i:] + state[i][:-i]
return state
def mix_columns(state):
"""
Mixes the columns of the state matrix
:param state: The state matrix
:returns: The state matrix with mixed columns
"""
# Define the new state matrix
new_state = [[0, 0], [0, 0]]
# Perform the MixColumns operation
new_state[0][0] = state[0][0] ^ galois_multiplication(4, state[1][0])
new_state[0][1] = state[0][1] ^ galois_multiplication(4, state[1][1])
new_state[1][0] = galois_multiplication(4, state[0][0]) ^ state[1][0]
new_state[1][1] = galois_multiplication(4, state[0][1]) ^ state[1][1]
return new_state
def mix_columns_inverse(state):
"""
Mixes the columns of the state matrix back to its original state
:param state: The state matrix
:returns: The state matrix with mixed columns
"""
# Define the new state matrix
new_state = [[0, 0], [0, 0]]
# Perform the InvMixColumns operation
new_state[0][0] = galois_multiplication(
9, state[0][0]) ^ galois_multiplication(2, state[1][0])
new_state[0][1] = galois_multiplication(
9, state[0][1]) ^ galois_multiplication(2, state[1][1])
new_state[1][0] = galois_multiplication(
2, state[0][0]) ^ galois_multiplication(9, state[1][0])
new_state[1][1] = galois_multiplication(
2, state[0][1]) ^ galois_multiplication(9, state[1][1])
return new_state
def rotate_word(word):
"""
Swap the positions of the two nibbles in a word
:param word: The word to swap nibbles in
:returns: The word with swapped nibbles
"""
return ((word & 0x0F) << 4) | ((word & 0xF0) >> 4)
def sub_word(word, box):
"""
Substitutes the nibbles in a word using a given box
:param word: The word to substitute nibbles in
:param box: The box to use for substitution. Either S_BOX or S_BOX_INVERSE
:returns: The word with substituted nibbles
"""
# Grabbing the nibbles from the word
high_nib = (word & 0xF0) >> 4
low_nib = word & 0x0F
# Replacing the nibbles with nibbles from the box
new_nib0 = box[(high_nib & 0b1100) >> 2][high_nib & 0b0011]
new_nib1 = box[(low_nib & 0b1100) >> 2][low_nib & 0b0011]
# Returning the new word
return (new_nib0 << 4) | new_nib1
def add_round_key(state, key):
"""
XORs the state with the key
:param state: The state matrix
:param key: The key to XOR the state with
:returns: The state matrix with XORed key
"""
state = state_to_block(state)
state = state ^ key
return block_to_state(state)
def key_expansion(cipherkey):
"""
Expands the cipherkey to 3 round keys
:param cipherkey: The cipherkey to expand
:returns: A list of 3 round keys
"""
keys = []
rcon = [0x80, 0x30]
w0 = (cipherkey & 0xFF00) >> 8
w1 = cipherkey & 0x00FF
w2 = sub_word(rotate_word(w1), S_BOX) ^ rcon[0] ^ w0
w3 = w2 ^ w1
w4 = sub_word(rotate_word(w3), S_BOX) ^ rcon[1] ^ w2
w5 = w4 ^ w3
keys.append(w0 << 8 | w1)
keys.append(w2 << 8 | w3)
keys.append(w4 << 8 | w5)
return keys
def encrypt(plaintext, cipherkey):
"""
Encrypts a plaintext using a cipherkey
:param plaintext: The plaintext to encrypt
:pram cipherkey: The cipherkey to use for encryption
:returns: The ciphertext
"""
# Expand the cipherkey
keys = key_expansion(cipherkey)
# Add the pre-round key
state = block_to_state(plaintext)
state = add_round_key(state, keys[0])
# Perform the first round
state = sub_nibbles(state, S_BOX)
state = shift_rows(state)
state = mix_columns(state)
state = add_round_key(state, keys[1])
# Perform the second round
state = sub_nibbles(state, S_BOX)
state = shift_rows(state)
state = add_round_key(state, keys[2])
return state_to_block(state)
def decrypt(ciphertext, cipherkey):
"""
Decrypts a ciphertext using a cipherkey
:param ciphertext: The ciphertext to decrypt
:pram cipherkey: The cipherkey to use for decryption
:returns: The plaintext
"""
# Expand the cipherkey
keys = key_expansion(cipherkey)
# Add the pre-round key
state = block_to_state(ciphertext)
state = add_round_key(state, keys[2])
# Perform the first round
state = shift_rows_inverse(state)
state = sub_nibbles(state, S_BOX_INVERSE)
state = add_round_key(state, keys[1])
state = mix_columns_inverse(state)
# Perform the second round
state = shift_rows_inverse(state)
state = sub_nibbles(state, S_BOX_INVERSE)
state = add_round_key(state, keys[0])
return state_to_block(state)
def block_to_state(block):
"""
Converts a 16-bit block to a 2x2 state matrix
:param block: The block to convert
:returns: A 2x2 state matrix
"""
state = [[0, 0], [0, 0]]
state[0][0] = (block & 0xF000) >> 12
state[0][1] = (block & 0x0F00) >> 8
state[1][0] = (block & 0x00F0) >> 4
state[1][1] = block & 0x000F
return state
def state_to_block(state):
"""
Converts a 2x2 state matrix to a 16-bit block
:param state: The state matrix to convert
:returns: A 16-bit block
"""
block = 0
block |= state[0][0] << 12
block |= state[0][1] << 8
block |= state[1][0] << 4
block |= state[1][1]
return block
def galois_multiplication(x, y):
"""
The Galois multiplication function takes two numbers and multiply them according to the rules of the Galois Field
:param x: The first number
:param y: The second number
:returns: The product of the two numbers
"""
r = 0
for i in range(4):
if (y >> i) & 1:
r ^= x
hbs = x & 0x8
x <<= 1
if hbs:
x ^= 0x13 # x^4 + x + 1
return r