forked from mfillpot/mathomatic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplex.c
457 lines (437 loc) · 11.3 KB
/
complex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
* Floating point complex number routines specifically for Mathomatic.
*
* Copyright (C) 1987-2012 George Gesslein II.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
The chief copyright holder can be contacted at gesslein@mathomatic.org, or
George Gesslein II, P.O. Box 224, Lansing, NY 14882-0224 USA.
*/
#include "includes.h"
/*
* Convert doubles x and y from rectangular coordinates to polar coordinates.
*
* The amplitude is stored in *radiusp and the angle in radians is stored in *thetap.
*/
void
rect_to_polar(x, y, radiusp, thetap)
double x, y, *radiusp, *thetap;
{
*radiusp = sqrt(x * x + y * y);
*thetap = atan2(y, x);
}
/*
* The roots command.
*/
int
roots_cmd(cp)
char *cp;
{
#define MAX_ROOT 10000.0 /* Root limit needed because more roots become more inaccurate and take longer to check. */
complexs c, c2;
#if !SILENT
complexs check;
double d;
#endif
double k, root, radius, theta, radius_root = 0.0;
char buf[MAX_CMD_LEN];
do_repeat:
if (*cp == '\0') {
my_strlcpy(prompt_str, _("Enter root (positive integer): "), sizeof(prompt_str));
if ((cp = get_string(buf, sizeof(buf))) == NULL)
return false;
}
root = strtod(cp, &cp);
if ((*cp && *cp != ',' && !isspace(*cp)) || !isfinite(root) || root < 0.0 || root > MAX_ROOT || fmod(root, 1.0) != 0.0) {
error(_("Root invalid or out of range."));
printf(_("Root must be a positive integer less than or equal to %.0f.\n"), MAX_ROOT);
return false;
}
cp = skip_comma_space(cp);
if (*cp == '\0') {
my_strlcpy(prompt_str, _("Enter real part (X): "), sizeof(prompt_str));
if ((cp = get_string(buf, sizeof(buf))) == NULL)
return false;
}
c.re = strtod(cp, &cp);
if (*cp && *cp != ',' && !isspace(*cp)) {
error(_("Number expected."));
return false;
}
cp = skip_comma_space(cp);
if (*cp == '\0') {
my_strlcpy(prompt_str, _("Enter imaginary part (Y): "), sizeof(prompt_str));
if ((cp = get_string(buf, sizeof(buf))) == NULL)
return false;
}
c.im = strtod(cp, &cp);
if (*cp) {
error(_("Number expected."));
return false;
}
if (c.re == 0.0 && c.im == 0.0) {
return repeat_flag;
}
/* convert to polar coordinates */
errno = 0;
rect_to_polar(c.re, c.im, &radius, &theta);
if (root) {
radius_root = pow(radius, 1.0 / root);
}
check_err();
fprintf(gfp, _("\nThe polar coordinates are:\n%.*g amplitude and\n%.*g radians (%.*g degrees).\n\n"),
precision, radius, precision, theta, precision, theta * 180.0 / M_PI);
if (root) {
if (c.im == 0.0) {
fprintf(gfp, _("The %.12g roots of (%.12g)^(1/%.12g) are:\n\n"), root, c.re, root);
} else {
fprintf(gfp, _("The %.12g roots of (%.12g%+.12g*i)^(1/%.12g) are:\n\n"), root, c.re, c.im, root);
}
for (k = 0.0; k < root; k += 1.0) {
/* add constants to theta and convert back to rectangular coordinates */
c2.re = radius_root * cos((theta + 2.0 * k * M_PI) / root);
c2.im = radius_root * sin((theta + 2.0 * k * M_PI) / root);
complex_fixup(&c2);
if (c2.re || c2.im == 0.0) {
fprintf(gfp, "%.12g ", c2.re);
}
if (c2.im) {
fprintf(gfp, "%+.12g*i", c2.im);
}
fprintf(gfp, "\n");
#if !SILENT
if (debug_level <= 0) {
continue;
}
check = c2;
for (d = 1.0; d < root; d += 1.0) {
check = complex_mult(check, c2);
}
complex_fixup(&check);
printf(_("Inverse check:"));
if (check.re || check.im == 0.0) {
printf(" %.10g", check.re);
}
if (check.im) {
printf(" %+.10g*i", check.im);
}
printf("\n\n");
#endif
}
}
if (repeat_flag)
goto do_repeat;
return true;
}
/*
* Approximate roots of complex numbers in an equation side:
* (complex^real) and (real^complex) and (complex^complex) all result in a complex number.
* This only gives one root, even when there may be many roots.
* Works best when the equation side has been approximated before this.
*
* Return true if the equation side was modified.
*/
int
complex_root_simp(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int i, j;
int level;
int len;
complexs c, p, r;
int modified = false;
start_over:
for (i = 1; i < *np; i += 2) {
if (equation[i].token.operatr != POWER)
continue;
level = equation[i].level;
for (j = i + 2; j < *np && equation[j].level >= level; j += 2)
;
len = j - (i + 1);
if (!parse_complex(&equation[i+1], len, &p))
continue;
for (j = i - 1; j >= 0 && equation[j].level >= level; j--)
;
j++;
if (!parse_complex(&equation[j], i - j, &c))
continue;
if (c.im == 0.0 && p.im == 0.0)
continue;
i += len + 1;
r = complex_pow(c, p);
#if 0
printf("(%.14g+%.14gi)^(%.14g+%.14gi) = %.14g+%.14gi\n", c.re, c.im, p.re, p.im, r.re, r.im);
#endif
if (*np + 5 - (i - j) > n_tokens) {
error_huge();
}
if ((j + 5) != i) {
blt(&equation[j+5], &equation[i], (*np - i) * sizeof(token_type));
*np += 5 - (i - j);
}
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = r.re;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = PLUS;
j++;
level++;
equation[j].level = level;
equation[j].kind = CONSTANT;
equation[j].token.constant = r.im;
j++;
equation[j].level = level;
equation[j].kind = OPERATOR;
equation[j].token.operatr = TIMES;
j++;
equation[j].level = level;
equation[j].kind = VARIABLE;
equation[j].token.variable = IMAGINARY;
modified = true;
goto start_over;
}
if (modified) {
debug_string(1, _("Complex number roots approximated."));
}
return modified;
}
/*
* Approximate all roots of complex numbers in an equation side.
*
* Return true if anything was approximated.
*/
int
approximate_complex_roots(equation, np)
token_type *equation; /* equation side pointer */
int *np; /* pointer to length of equation side */
{
int rv = false;
for (;;) {
elim_loop(equation, np);
if (!complex_root_simp(equation, np))
break;
rv = true;
}
return rv;
}
/*
* Get a constant, if the passed expression evaluates to a constant.
* This should not be called from low level routines.
*
* Return true if successful, with the floating point constant returned in *dp.
*/
int
get_constant(p1, n, dp)
token_type *p1; /* expression pointer */
int n; /* length of expression */
double *dp; /* pointer to returned double */
{
int i, j;
int level;
double d1, d2;
int prev_approx_flag;
#if DEBUG
if (n < 1 || (n & 1) != 1) {
error_bug("Call to get_constant() has invalid expression length.");
}
#endif
if (n == 1) {
switch (p1[0].kind) {
case CONSTANT:
*dp = p1[0].token.constant;
return true;
case VARIABLE:
if (var_is_const(p1[0].token.variable, dp)) {
return true;
}
break;
case OPERATOR:
break;
}
} else if (n >= 3) {
level = p1[1].level;
if (!get_constant(p1, 1, &d1))
return false;
for (i = 1; i < n; i = j) {
if (p1[i].kind != OPERATOR || p1[i].level > level) {
#if DEBUG
error_bug("Possible error in get_constant().");
#endif
return false;
}
level = p1[i].level;
for (j = i + 2; j < n && p1[j].level > level; j += 2)
;
if (!get_constant(&p1[i+1], j - (i + 1), &d2))
return false;
prev_approx_flag = approximate_roots;
approximate_roots = true;
if (calc(NULL, &d1, p1[i].token.operatr, d2)) {
approximate_roots = prev_approx_flag;
if (p1[i].token.operatr == POWER && !domain_check)
return false;
domain_check = false;
} else {
approximate_roots = prev_approx_flag;
domain_check = false;
return false;
}
}
*dp = d1;
return true;
}
return false;
}
/*
* Get the value of a constant complex number expression.
* Doesn't always work unless expression is approximated first
* with something like the approximate command.
* Functionality was greatly improved recently, making success more likely
* without approximating.
*
* If successful, return true with complex number in *cp.
*/
int
parse_complex(p1, n, cp)
token_type *p1; /* expression pointer */
int n; /* length of expression */
complexs *cp; /* pointer to returned complex number */
{
int j, k;
int imag_cnt = 0, times_cnt = 0;
complexs c, tmp;
int level, level2;
if (!exp_is_numeric(p1, n)) {
return false;
}
if (get_constant(p1, n, &c.re)) {
c.im = 0.0;
*cp = c;
return true;
}
if (found_var(p1, n, IMAGINARY) != 1)
return false;
level = min_level(p1, n);
c.re = 0.0;
c.im = 1.0;
j = n - 1;
do {
for (k = j - 1; k > 0 && p1[k].level > level; k -= 2)
;
if (k > 0) {
#if DEBUG
if (p1[k].level != level || p1[k].kind != OPERATOR) {
error_bug("Error in parse_complex().");
}
#endif
switch (p1[k].token.operatr) {
case MINUS:
case PLUS:
if (get_constant(&p1[k+1], j - k, &tmp.re)) {
if (p1[k].token.operatr == MINUS)
c.re -= tmp.re;
else
c.re += tmp.re;
j = k - 1;
}
}
} else
break;
} while (j < k);
for (; j >= 0; j--) {
switch (p1[j].kind) {
case CONSTANT:
break;
case VARIABLE:
if (var_is_const(p1[j].token.variable, NULL))
break;
if (p1[j].token.variable != IMAGINARY)
return false;
++imag_cnt;
break;
case OPERATOR:
level2 = p1[j].level;
switch (p1[j].token.operatr) {
case TIMES:
case DIVIDE:
if (++times_cnt > 1)
return false;
if (level2 > (level + 1) || p1[j+1].level != level2)
return false;
for (k = j; k > 0 && p1[k].level == level2; k -= 2) {
if (p1[k-1].level != level2)
return false;
if (!(p1[k+1].kind == VARIABLE && p1[k+1].token.variable == IMAGINARY)) {
if (get_constant(&p1[k+1], 1, &tmp.im)) {
if (p1[k].token.operatr == DIVIDE)
c.im /= tmp.im;
else
c.im *= tmp.im;
} else
return false;
} else if (p1[k].token.operatr == DIVIDE) {
c.im = -c.im;
}
if (p1[k-1].kind == VARIABLE && p1[k-1].token.variable == IMAGINARY) {
if (++imag_cnt > 1)
return false;
k -= 2;
if (k > 0 && p1[k].level == level2) {
if (p1[k-1].level != level2)
return false;
if (p1[k-1].kind == VARIABLE && p1[k-1].token.variable == IMAGINARY)
return false;
if (p1[k].token.operatr == DIVIDE)
c.im = -c.im;
} else
break;
}
}
if (!(p1[k+1].kind == VARIABLE && p1[k+1].token.variable == IMAGINARY)) {
if (get_constant(&p1[k+1], 1, &tmp.im)) {
c.im *= tmp.im;
} else
return false;
}
j = k + 1;
continue;
case MINUS:
if (imag_cnt) {
c.im = -c.im;
}
case PLUS:
if (level != level2)
return false;
if (get_constant(p1, j, &tmp.re)) {
c.re += tmp.re;
goto done;
}
return false;
}
default:
return false;
}
}
done:
if (imag_cnt != 1) {
#if DEBUG
error_bug("Imaginary count wrong in parse_complex().");
#else
return false;
#endif
}
*cp = c;
return true;
}