-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmilExampleMoveScript.sml
1043 lines (954 loc) · 42.9 KB
/
milExampleMoveScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open HolKernel boolLib Parse bossLib wordsLib wordsTheory finite_mapTheory listTheory pairTheory pred_setTheory relationTheory bisimulationTheory milUtilityTheory milTheory milSemanticsUtilityTheory milMetaTheory milTracesTheory milExampleUtilityTheory milStoreTheory milExampleBisimulationTheory milNoninterferenceTheory milExecutableExamplesTheory milExecutableUtilityTheory milMaxExeTraceExampleMoveTheory milLib;
(* ===================================== *)
(* Example MIL program for moving values *)
(* ===================================== *)
val _ = new_theory "milExampleMove";
(* --------------------- *)
(* Definition of program *)
(* --------------------- *)
(* Translation of program with instruction "mov r1 r5" to MIL, example 0 in wiki *)
Definition example_mov:
example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 : I =
{ i_assign t00 (e_val val_true) (o_internal (e_val val_zero)); (* zeroed name *)
i_assign t10 (e_val val_true) (o_internal (e_val r1));
i_assign t11 (e_val val_true) (o_internal (e_val r5));
i_assign t12 (e_val val_true) (o_load res_REG t11);
i_assign t13 (e_val val_true) (o_store res_REG t10 t12);
i_assign t14 (e_val val_true) (o_load res_PC t00);
i_assign t15 (e_val val_true) (o_internal (e_add (e_name t14) (e_val 4w)));
i_assign t16 (e_val val_true) (o_store res_PC t00 t15)
}
End
(* --------------- *)
(* Security policy *)
(* --------------- *)
(* FIXME: reformulate using milSub *)
(* Indistinguishability relation as security policy, fully parameterized;
does not respect reflexivity
*)
Definition example_mov_rel:
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5
(State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2) =
? I0 I0' .
t00 < t10 /\ t10 < t11 /\ t11 < t12 /\ t12 < t13 /\ t13 < t14 /\ t14 < t15 /\ t15 < t16 /\
well_formed_state (State_st I1 s1 C1 F1) /\
well_formed_state (State_st I2 s2 C2 F2) /\
I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
I2 = I0' UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
FDOM s1 = FDOM s2 /\
F1 = F2 /\
bound_names_program I0 <
bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) /\
bound_names_program I0' <
bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) /\
(!i. i IN I0 ==> Completed (State_st I1 s1 C1 F1) i) /\
(!i. i IN I0' ==> Completed (State_st I2 s2 C2 F2) i) /\
ts_r5 IN bound_names_program I0 /\
ts_r5 IN bound_names_program I0' /\
bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t12 res_REG r5) = { ts_r5 } /\
bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t12 res_REG r5) = { ts_r5 } /\
ts_pc IN bound_names_program I0 /\
ts_pc IN bound_names_program I0' /\
bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t14 res_PC val_zero) = { ts_pc } /\
bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t14 res_PC val_zero) = { ts_pc } /\
FLOOKUP s1 ts_pc = FLOOKUP s2 ts_pc /\
FLOOKUP s1 t14 = FLOOKUP s2 t14 /\
FLOOKUP s1 t15 = FLOOKUP s2 t15 /\
FLOOKUP s1 t16 = FLOOKUP s2 t16
End
Theorem example_mov_rel_symmetric[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
symmetric (example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
Proof
rw [symmetric_def] >>
Cases_on `x` >> Cases_on `y` >>
rw [example_mov_rel] >>
METIS_TAC []
QED
Theorem example_mov_rel_transitive[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
transitive (example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
Proof
rw [transitive_def] >>
Cases_on `x` >> Cases_on `y` >> Cases_on `z` >>
fs [example_mov_rel] >>
METIS_TAC []
QED
(* ------------- *)
(* Common lemmas *)
(* ------------- *)
Theorem example_mov_bn[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 .
bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)
= { t00; t10; t11; t12; t13; t14; t15; t16 }
Proof
fs [bound_names_program, example_mov, SET_EQ_SUBSET] >>
rw [] >>
(METIS_TAC [bound_name_instr] ORELSE
rw [SUBSET_DEF] >> fs [bound_name_instr])
QED
(* ------------------- *)
(* Lemmas for executes *)
(* ------------------- *)
Theorem example_mov_t_gt_bn_str_may_addr_t12[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 s1 C1 F1 t .
t12 < t13 ==>
t = t00 \/ t = t10 \/ t = t11 \/ t = t12 \/ t = t13 \/ t = t14 \/ t = t15 \/ t = t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
bound_names_program (str_may_addr
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)
s1 C1 F1) t12 res_REG r5) <> {} ==>
{t} > bound_names_program (str_may_addr
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)
s1 C1 F1) t12 res_REG r5)
Proof
rw [names_gt] >>>
TACS_TO_LT [
Q.ABBREV_TAC `t00 = t`,
Q.ABBREV_TAC `t10 = t`,
Q.ABBREV_TAC `t11 = t`,
Q.ABBREV_TAC `t12 = t`,
Q.ABBREV_TAC `t13 = t`,
Q.ABBREV_TAC `t14 = t`,
Q.ABBREV_TAC `t15 = t`,
Q.ABBREV_TAC `t16 = t`] >>
fs [str_may_addr, bound_names_program, bound_name_instr] >> (
`t' IN bound_names_program I0` by METIS_TAC [instr_in_bound_names_program] >>
`t IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
`t' < t` by METIS_TAC [bound_names_program, bound_name_instr, names_lt] >>
fs [] ORELSE
fs [example_mov])
QED
Theorem example_mov_t_gt_bn_str_may_addr_t14[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 s1 C1 F1 t .
t14 < t16 ==>
t = t00 \/ t = t10 \/ t = t11 \/ t = t12 \/ t = t13 \/ t = t14 \/ t = t15 \/ t = t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
bound_names_program (str_may_addr
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)
s1 C1 F1) t14 res_PC val_zero) <> {} ==>
{t} > bound_names_program (str_may_addr
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)
s1 C1 F1) t14 res_PC val_zero)
Proof
rw [names_gt] >>>
TACS_TO_LT [
Q.ABBREV_TAC `t00 = t`,
Q.ABBREV_TAC `t10 = t`,
Q.ABBREV_TAC `t11 = t`,
Q.ABBREV_TAC `t12 = t`,
Q.ABBREV_TAC `t13 = t`,
Q.ABBREV_TAC `t14 = t`,
Q.ABBREV_TAC `t15 = t`,
Q.ABBREV_TAC `t16 = t`] >>
fs [str_may_addr, bound_names_program, bound_name_instr] >> (
`t' IN bound_names_program I0` by METIS_TAC [instr_in_bound_names_program] >>
`t IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
`t' < t` by METIS_TAC [bound_names_program, bound_name_instr, names_lt] >>
fs [] ORELSE
fs [example_mov])
QED
(* i_assign t00 (e_val val_true) (o_internal (e_val val_zero)) *)
Theorem example_mov_rel_t00_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
internal_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t00 (e_val val_true) (e_val val_zero) (e_val val_zero)
Proof
rw [internal_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
(* TODO: separate lemma example_mov_rel_t00_exe_pre *)
fs [example_mov_rel] >> rw [] >>
`t00 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t00` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t10 (e_val val_true) (o_internal (e_val r1)) *)
Theorem example_mov_rel_t10_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
internal_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t10 (e_val val_true) (e_val r1) (e_val r1)
Proof
rw [internal_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
fs [example_mov_rel] >> rw [] >>
`t10 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t10` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t11 (e_val val_true) (o_internal (e_val r5)) *)
Theorem example_mov_rel_t11_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
internal_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t11 (e_val val_true) (e_val r5) (e_val r5)
Proof
rw [internal_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
fs [example_mov_rel] >> rw [] >>
`t11 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t11` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t12 (e_val val_true) (o_load res_REG t11) *)
Theorem example_mov_rel_t12_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
load_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t12 (e_val val_true) res_REG t11
Proof
rw [load_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t12 res_REG a) = {ts_r5}:
since well-formedness of R and FLOOKUP s1 t11 = SOME a imply [t11]s1 = a, but [t11]s1 = r5,
so a = r5 *)
`?I0. I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t12 res_REG r5) = {ts_r5}`
by METIS_TAC [example_mov_rel] >>
`i_assign t11 (e_val val_true) (o_internal (e_val r5)) IN I1`
by fs [example_mov] >>
`sem_instr (i_assign t11 (e_val val_true) (o_internal (e_val r5))) (State_st I1 s1 C1 F1) =
SOME (a,obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t11 (e_val val_true) (o_internal (e_val r5))) (State_st I1 s1 C1 F1) =
SOME (r5,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a = r5` by fs [] >>
(* show bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t12 res_REG a') = {ts_r5}:
since well-formedness of R and FLOOKUP s2 t11 = SOME a' imply [t11]s2 = a', but [t11]s2 = r5,
so a' = r5 *)
`?I0. I2 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t12 res_REG r5) = {ts_r5}`
by METIS_TAC [example_mov_rel] >>
`i_assign t11 (e_val val_true) (o_internal (e_val r5)) IN I2`
by fs [example_mov] >>
`sem_instr (i_assign t11 (e_val val_true) (o_internal (e_val r5))) (State_st I2 s2 C2 F2) =
SOME (a',obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t11 (e_val val_true) (o_internal (e_val r5))) (State_st I2 s2 C2 F2) =
SOME (r5,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a' = r5` by fs [] >>
METIS_TAC [],
(* show preservation *)
fs [example_mov_rel] >> rw [] >>
`t12 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t12` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t13 (e_val val_true) (o_store res_REG t10 t12) *)
Theorem example_mov_rel_t13_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
store_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t13 (e_val val_true) res_REG t10 t12
Proof
rw [store_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
fs [example_mov_rel] >> rw [] >>
`t13 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t13` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t14 (e_val val_true) (o_load res_PC t00) *)
Theorem example_mov_rel_t14_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
load_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t14 (e_val val_true) res_PC t00
Proof
rw [load_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t14 res_PC a) = {ts_pc}:
since well-formedness of R and FLOOKUP s1 t00 = SOME a imply [t00]s1 = a, but [t00]s1 = val_zero,
so a = val_zero *)
`?I0. I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t14 res_PC val_zero) = {ts_pc}`
by METIS_TAC [example_mov_rel] >>
`i_assign t00 (e_val val_true) (o_internal (e_val val_zero)) IN I1`
by fs [example_mov] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I1 s1 C1 F1) =
SOME (a,obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I1 s1 C1 F1) =
SOME (val_zero,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a = val_zero` by fs [] >>
(* show bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t14 res_PC a') = {ts_pc}:
since well-formedness of R and FLOOKUP s2 t00 = SOME a' imply [t00]s2 = a', but [t00]s2 = val_zero,
so a' = val_zero *)
`?I0. I2 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t14 res_PC val_zero) = {ts_pc}`
by METIS_TAC [example_mov_rel] >>
`i_assign t00 (e_val val_true) (o_internal (e_val val_zero)) IN I2`
by fs [example_mov] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I2 s2 C2 F2) =
SOME (a',obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I2 s2 C2 F2) =
SOME (val_zero,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a' = val_zero` by fs [] >>
METIS_TAC [],
(* show preservation *)
`v1 = v2` by (
`?I0. I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I1 s1 C1 F1) t14 res_PC val_zero) = {ts_pc}`
by METIS_TAC [example_mov_rel] >>
`i_assign t00 (e_val val_true) (o_internal (e_val val_zero)) IN I1`
by fs [example_mov] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I1 s1 C1 F1) =
SOME (a,obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I1 s1 C1 F1) =
SOME (val_zero,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a = val_zero` by fs [] >>
`?I0. I2 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
bound_names_program (str_act_addr (State_st I2 s2 C2 F2) t14 res_PC val_zero) = {ts_pc}`
by METIS_TAC [example_mov_rel] >>
`i_assign t00 (e_val val_true) (o_internal (e_val val_zero)) IN I2`
by fs [example_mov] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I2 s2 C2 F2) =
SOME (a',obs_internal)`
by METIS_TAC [wfs_internal_flookup_sem_instr, example_mov_rel] >>
`sem_instr (i_assign t00 (e_val val_true) (o_internal (e_val val_zero))) (State_st I2 s2 C2 F2) =
SOME (val_zero,obs_internal)`
by fs [sem_expr_correct, sem_instr] >>
`a' = val_zero` by fs [] >>
rw [] >> fs [example_mov_rel]) >>
fs [example_mov_rel] >> rw [] >>
`t14 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t14` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t15 (e_val val_true) (o_internal (e_add (e_name t14) (e_val 4w))) *)
Theorem example_mov_rel_t15_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
internal_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t15 (e_val val_true) (e_add (e_name t14) (e_val 4w)) (e_add (e_name t14) (e_val 4w))
Proof
rw [internal_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
`v1 = v2` by (
fs [example_mov_rel] >>
`t15 NOTIN names_e (e_add (e_name t14) (e_val 4w))`
by fs [names_e, names_o] >>
`i_assign t15 (e_val val_true) (o_internal (e_add (e_name t14) (e_val 4w)))
IN I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5`
by fs [example_mov] >>
`FLOOKUP (s1 |+ (t15, v1)) t15 = SOME v1` by fs [FLOOKUP_DEF] >>
`sem_expr (e_add (e_name t14) (e_val 4w)) s1 = SOME v1`
by METIS_TAC [sem_expr_notin_names_fupdate_eq, wfs_internal_flookup_sem_expr] >>
`FLOOKUP (s2 |+ (t15, v2)) t15 = SOME v2` by fs [FLOOKUP_DEF] >>
`sem_expr (e_add (e_name t14) (e_val 4w)) s2 = SOME v2`
by METIS_TAC [sem_expr_notin_names_fupdate_eq, wfs_internal_flookup_sem_expr] >>
`sem_expr (e_add (e_name t14) (e_val 4w)) s1 = sem_expr (e_add (e_name t14) (e_val 4w)) s2`
by fs [sem_expr_correct, names_e] >>
fs []) >>
fs [example_mov_rel] >> rw [] >>
`t15 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t15` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* i_assign t16 (e_val val_true) (o_store res_PC t00 t15) *)
Theorem example_mov_rel_t16_exe[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
store_exe_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t16 (e_val val_true) res_PC t00 t15
Proof
rw [store_exe_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov, names_e],
(* show preservation *)
`v1 = v2` by (
fs [example_mov_rel] >>
`FLOOKUP s1 t15 = SOME v1`
by (
`i_assign t16 (e_val val_true) (o_store res_PC t00 t15) IN I1` by fs [example_mov] >>
`FLOOKUP (s1 |+ (t16, v1)) t16 = SOME v1` by fs [FLOOKUP_DEF] >>
`FLOOKUP (s1 |+ (t16, v1)) t15 = SOME v1` by METIS_TAC [wfs_store_flookup] >>
`t15 <> t16` by fs [] >>
METIS_TAC [FLOOKUP_UPDATE]) >>
`FLOOKUP s2 t15 = SOME v2`
by (
`i_assign t16 (e_val val_true) (o_store res_PC t00 t15) IN I2` by fs [example_mov] >>
`FLOOKUP (s2 |+ (t16, v2)) t16 = SOME v2` by fs [FLOOKUP_DEF] >>
`FLOOKUP (s2 |+ (t16, v2)) t15 = SOME v2` by METIS_TAC [wfs_store_flookup] >>
`t15 <> t16` by fs [] >>
METIS_TAC [FLOOKUP_UPDATE]) >> fs []) >>
fs [example_mov_rel] >> rw [] >>
`t16 NOTIN FDOM s1` by fs [map_up, map_down, flookup_thm] >>
`map_up s2 t16` by METIS_TAC [map_up, map_down, flookup_thm] >>
`ts_pc < t00`
by (
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by fs [example_mov_bn] >>
METIS_TAC [names_lt]) >>
`t12 < t13 /\ t14 < t16` by fs [] >>
Q.EXISTS_TAC `I0` >> Q.EXISTS_TAC `I0'` >> rw [] >>
fs [completed_fupdate, FLOOKUP_UPDATE] >>
METIS_TAC [example_mov_t_gt_bn_str_may_addr_t12,
example_mov_t_gt_bn_str_may_addr_t14,
bn_str_act_addr_eq_s,
bn_str_act_addr_singleton_bn_str_may_addr_nonempty]
]
QED
(* ------------------ *)
(* Lemmas for fetches *)
(* ------------------ *)
(* Any instruction t in the preamble I0 must be strictly less than t00. *)
Theorem example_mov_I0_t_lt_t00[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 t c mop .
t00 < t10 /\ t10 < t11 /\ t11 < t12 /\ t12 < t13 /\ t13 < t14 /\ t14 < t15 /\ t15 < t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
i_assign t c mop IN I0 ==>
t < t00
Proof
rw [] >>
`t IN bound_names_program I0`
by METIS_TAC [instr_in_bound_names_program] >>
`!t'. t' IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==> t' >= t00`
by fs [example_mov_bn] >>
`i_assign t00 (e_val val_true) (o_internal (e_val val_zero))
IN example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5`
by rw [example_mov] >>
`t00 IN bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5)`
by METIS_TAC [instr_in_bound_names_program] >>
fs [names_lt]
QED
(* Address information of t16 *)
Theorem example_mov_addr_of_t16[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 .
t00 < t10 /\ t10 < t11 /\ t11 < t12 /\ t12 < t13 /\ t13 < t14 /\ t14 < t15 /\ t15 < t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
addr_of (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) t16 = SOME (res_PC, t00)
Proof
rw [addr_of] >>
`{ (r, ta) |
(?c.
i_assign t16 c (o_load r ta) IN I0 \/
i_assign t16 c (o_load r ta) IN example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) \/
(?c tv.
i_assign t16 c (o_store r ta tv) IN I0 \/
i_assign t16 c (o_store r ta tv) IN example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) }
= { (res_PC, t00) }`
by (
rw [SET_EQ_SUBSET] >| [
rw [SUBSET_DEF] >> (
`t16 < t00` by METIS_TAC [example_mov_I0_t_lt_t00] >> fs [] ORELSE fs [example_mov]
),
DISJ2_TAC >>
Q.EXISTS_TAC `e_val val_true` >>
Q.EXISTS_TAC `t15` >>
rw [example_mov]
]) >>
rw []
QED
(* str-may(σ1, t16) ⊆ I0.
This holds because there is no PC store between t00 and t16. *)
Theorem example_mov_str_may_t16_subset_I0[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 s1 C1 F1 .
t00 < t10 /\ t10 < t11 /\ t11 < t12 /\ t12 < t13 /\ t13 < t14 /\ t14 < t15 /\ t15 < t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16
SUBSET I0
Proof
rw [SUBSET_DEF] >>
fs [str_may] >>
`addr_of (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) t16 = SOME (res_PC, t00)`
by METIS_TAC [example_mov_addr_of_t16] >>
`r = res_PC` by fs [] >>
fs [example_mov]
QED
(* bn(str-may(σ1, t16)) ⊆ F1. *)
Theorem example_mov_bn_str_may_t16_fetched[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 s1 C1 F1 .
t00 < t10 /\ t10 < t11 /\ t11 < t12 /\ t12 < t13 /\ t13 < t14 /\ t14 < t15 /\ t15 < t16 ==>
bound_names_program I0 < bound_names_program (example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) ==>
(!i. i IN I0 ==>
Completed (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) i) ==>
bound_names_program
(str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16)
SUBSET F1
Proof
rw [] >>
`str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16
SUBSET I0`
by rw [example_mov_str_may_t16_subset_I0] >>
`!i. i IN str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16 ==>
Completed (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) i`
by fs [SUBSET_DEF] >>
`!i. i IN (str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16) ==>
?t c ta tv. i = i_assign t c (o_store res_PC ta tv)`
by (
rw [str_may] >>
`addr_of (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) t16 = SOME (res_PC, t00)`
by METIS_TAC [example_mov_addr_of_t16] >>
fs []) >>
`!i. i IN (str_may (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1) t16) ==>
bound_name_instr i IN F1`
by METIS_TAC [completed_store_PC_in_str_may_fetched, bound_name_instr] >>
rw [bound_names_program, SUBSET_DEF] >>
rw []
QED
(* i_assign t16 (e_val val_true) (o_store res_PC t00 t15) *)
Theorem example_mov_rel_t16_ftc[local]:
(! v0 t0 . translate_val v0 t0 = {}) ==>
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
store_ftc_preserving'
(example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
t16 (e_val val_true) t00 t15
Proof
rw [store_ftc_preserving'] >>
FIRST_PROVE [
fs [example_mov_rel, example_mov],
fs [example_mov_rel] >>
rw [example_mov_bn_str_may_t16_fetched],
fs [example_mov_rel] >>
METIS_TAC [completed_F_union_t, bn_str_act_addr_eq_CF]
]
QED
(* ------------------------- *)
(* Lemmas for (bi)simulation *)
(* ------------------------- *)
val example_mov_rel_t00_exe_sim =
GEN_ALL $ MATCH_MP R_internal_exe_sim' $ SPEC_ALL example_mov_rel_t00_exe
val example_mov_rel_t10_exe_sim =
GEN_ALL $ MATCH_MP R_internal_exe_sim' $ SPEC_ALL example_mov_rel_t10_exe
val example_mov_rel_t11_exe_sim =
GEN_ALL $ MATCH_MP R_internal_exe_sim' $ SPEC_ALL example_mov_rel_t11_exe
val example_mov_rel_t12_exe_sim =
GEN_ALL $ MATCH_MP R_load_exe_sim' $ SPEC_ALL example_mov_rel_t12_exe
val example_mov_rel_t13_exe_sim =
GEN_ALL $ MATCH_MP R_store_exe_sim' $ SPEC_ALL example_mov_rel_t13_exe
val example_mov_rel_t14_exe_sim =
GEN_ALL $ MATCH_MP R_load_exe_sim' $ SPEC_ALL example_mov_rel_t14_exe
val example_mov_rel_t15_exe_sim =
GEN_ALL $ MATCH_MP R_internal_exe_sim' $ SPEC_ALL example_mov_rel_t15_exe
val example_mov_rel_t16_exe_sim =
GEN_ALL $ MATCH_MP R_store_exe_sim' $ SPEC_ALL example_mov_rel_t16_exe
val example_mov_rel_t16_ftc_sim =
DISCH_ALL $
GEN_ALL $ MATCH_MP (UNDISCH_ALL R_store_ftc_sim') (SPEC_ALL (UNDISCH_ALL example_mov_rel_t16_ftc))
Theorem example_mov_rel_t_ftc_sim[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 ts_pc ts_r5 S1 S2 S1' obs I' t .
t = t00 \/ t = t10 \/ t = t11 \/ t = t12 \/ t = t13 \/ t = t14 \/ t = t15 ==>
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 ==>
out_of_order_step' S1 (l_lb obs (act_ftc I') t) S1' ==>
? S2' . out_of_order_step' S2 (l_lb obs (act_ftc I') t) S2' /\
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1' S2'
Proof
REPEAT STRIP_TAC >>
(* let S1 = State_st I1 s1 C1 F1, S2 = State_st I2 s2 C2 F2, S1' = State_st I1' s1' C1' F1' *)
Cases_on `S1` >> Cases_on `S2` >> Cases_on `S1'` >>
rename1 `example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5
(State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2)` >>
rename1 `out_of_order_step' (State_st I1 s1 C1 F1) (l_lb obs (act_ftc I') t) (State_st I1' s1' C1' F1')` >>
(* let S2' = State_st I2' s2' C2' F2' *)
Q.REFINE_EXISTS_TAC `State_st I2' s2' C2' F2'` >>
fs [out_of_order_step'] >>
`?c t1 t2. i_assign t c (o_store res_PC t1 t2) IN I1`
by (fs [out_of_order_step_cases] >> METIS_TAC []) >>
`?I0.
I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
(!i. i IN I0 ==> Completed (State_st I1 s1 C1 F1) i)`
by METIS_TAC [example_mov_rel] >>
(* show that t is not an instruction in I0 *)
(Cases_on `i_assign t c (o_store res_PC t1 t2) IN I0` >- (
`instr_in_State (i_assign t c (o_store res_PC t1 t2))
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)`
by fs [instr_in_State] >>
`~(Completed (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)
(i_assign t c (o_store res_PC t1 t2)))`
by METIS_TAC [OoO_transition_instr_incompleted, example_mov_rel] >>
METIS_TAC [])) >>
(* but, *)
`t < t16` by fs [example_mov_rel] >>
(* no such cases *)
fs [example_mov]
QED
Theorem example_mov_rel_t_cmt_sim[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 I0 ts_pc ts_r5 S1 S2 S1' obs a v t .
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 ==>
out_of_order_step' S1 (l_lb obs (act_cmt a v) t) S1' ==>
? S2' . out_of_order_step' S2 (l_lb obs (act_cmt a v) t) S2' /\
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1' S2'
Proof
rw [] >>
(* let S1 = State_st I1 s1 C1 F1, S2 = State_st I2 s2 C2 F2, S1' = State_st I1' s1' C1' F1' *)
Cases_on `S1` >> Cases_on `S2` >> Cases_on `S1'` >>
rename1 `example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5
(State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2)` >>
rename1 `out_of_order_step' (State_st I1 s1 C1 F1) (l_lb obs (act_cmt a v) t) (State_st I1' s1' C1' F1')` >>
(* let S2' = State_st I2' s2' C2' F2' *)
Q.REFINE_EXISTS_TAC `State_st I2' s2' C2' F2'` >>
fs [out_of_order_step'] >>
`?c t1 t2. i_assign t c (o_store res_MEM t1 t2) IN I1`
by (fs [out_of_order_step_cases] >> METIS_TAC []) >>
`?I0.
I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
(!i. i IN I0 ==> Completed (State_st I1 s1 C1 F1) i)`
by METIS_TAC [example_mov_rel] >>
(* show that t is not an instruction in I0 *)
(Cases_on `i_assign t c (o_store res_MEM t1 t2) IN I0` >- (
`instr_in_State (i_assign t c (o_store res_MEM t1 t2))
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)`
by fs [instr_in_State] >>
`~(Completed (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)
(i_assign t c (o_store res_MEM t1 t2)))`
by PROVE_TAC [OoO_transition_instr_incompleted, example_mov_rel] >>
METIS_TAC [example_mov_rel])) >>
rw [] >>
(* no such cases *)
fs [example_mov]
QED
(* -------------------- *)
(* Bisimulation results *)
(* -------------------- *)
Theorem example_mov_rel_step_t[local]:
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 S1' obs act t .
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 ==>
out_of_order_step' S1 (l_lb obs act t) S1' ==>
t = t00 \/ t = t10 \/ t = t11 \/ t = t12 \/ t = t13 \/ t = t14 \/ t = t15 \/ t = t16
Proof
rw [] >>
(* let S1 = State_st I1 s1 C1 F1, S2 = State_st I2 s2 C2 F2, S1' = State_st I1' s1' C1' F1' *)
Cases_on `S1` >> Cases_on `S2` >> Cases_on `S1'` >>
rename1 `example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5
(State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2)` >>
rename1 `out_of_order_step' (State_st I1 s1 C1 F1) (l_lb obs act t) (State_st I1' s1' C1' F1')` >>
Cases_on `act` >>
fs [out_of_order_step'] >> TRY (rename1 `act_cmt aa av`) >>
`?c mop. i_assign t c mop IN I1`
by (fs [out_of_order_step_cases] >> METIS_TAC []) >>
`?I0.
I1 = I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 /\
(!i. i IN I0 ==> Completed (State_st I1 s1 C1 F1) i)`
by METIS_TAC [example_mov_rel] >>
(* show that t is not an instruction in I0 *)
(Cases_on `i_assign t c mop IN I0` >- (
`instr_in_State (i_assign t c mop)
(State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)`
by fs [instr_in_State] >>
`~(Completed (State_st (I0 UNION example_mov t00 t10 t11 t12 t13 t14 t15 t16 r1 r5) s1 C1 F1)
(i_assign t c mop))`
by PROVE_TAC [OoO_transition_instr_incompleted, example_mov_rel] >>
METIS_TAC [example_mov_rel])) >>
fs [example_mov]
QED
Theorem example_mov_rel_sim:
(! v0 t0 . translate_val v0 t0 = {}) ==>
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 S1' l .
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2 ==>
out_of_order_step' S1 l S1' ==>
? S2' . out_of_order_step' S2 l S2' /\
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1' S2'
Proof
rw [] >>
Cases_on `l` >> rename1 `l_lb obs act t` >>
`t = t00 \/ t = t10 \/ t = t11 \/ t = t12 \/ t = t13 \/ t = t14 \/ t = t15 \/ t = t16`
by PROVE_TAC [example_mov_rel_step_t] >>
Cases_on `act` >>
FIRST_PROVE [
METIS_TAC [example_mov_rel_t00_exe_sim],
METIS_TAC [example_mov_rel_t10_exe_sim],
METIS_TAC [example_mov_rel_t11_exe_sim],
METIS_TAC [example_mov_rel_t12_exe_sim],
METIS_TAC [example_mov_rel_t13_exe_sim],
METIS_TAC [example_mov_rel_t14_exe_sim],
METIS_TAC [example_mov_rel_t15_exe_sim],
METIS_TAC [example_mov_rel_t16_exe_sim],
METIS_TAC [example_mov_rel_t16_ftc_sim],
METIS_TAC [example_mov_rel_t_cmt_sim],
METIS_TAC [example_mov_rel_t_ftc_sim]
]
QED
Theorem example_mov_rel_bisim:
(! v0 t0 . translate_val v0 t0 = {}) ==>
! t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 .
BISIM out_of_order_step' (example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5)
Proof
rw [BISIM_def] >| [
Cases_on `l` >>
METIS_TAC [example_mov_rel_sim],
rename1 `example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S1 S2` >>
rename1 `out_of_order_step' S2 l S2'` >>
`example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S2 S1`
by METIS_TAC [example_mov_rel_symmetric, symmetric_def] >>
`?S1'. out_of_order_step' S1 l S1' /\
example_mov_rel t00 t10 t11 t12 t13 t14 t15 t16 r1 r5 ts_pc ts_r5 S2' S1'`
by METIS_TAC [example_mov_rel_sim] >>
METIS_TAC [example_mov_rel_symmetric, symmetric_def]
]
QED
(* --------------------------- *)
(* Conditional Noninterference *)
(* --------------------------- *)
(* Security policy. *)
Definition example_mov_secpol:
example_mov_secpol r1 r5 ts_pc ts_r5 (State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2) =
(sem_expr = sem_expr_exe /\
translate_val_list = (\v t. []) /\
? a1 a1' b1 b1' .
State_st I1 s1 C1 F1 = state_list_to_state (example_mov_state_st_list a1 b1 r1 r5) /\
State_st I2 s2 C2 F2 = state_list_to_state (example_mov_state_st_list a1' b1' r1 r5) /\
ts_pc = 6 /\
FLOOKUP s1 ts_pc = SOME b1 /\
FLOOKUP s2 ts_pc = SOME b1' /\
ts_r5 = 3 /\
FLOOKUP s1 ts_r5 = SOME a1 /\
FLOOKUP s2 ts_r5 = SOME a1'
)
End
(* In-Order post-relation. *)
Definition example_mov_io:
example_mov_io r1 r5 ts_pc ts_r5 (State_st I1 s1 C1 F1) (State_st I2 s2 C2 F2) =
? a1 a1' b1 b1' .
FLOOKUP s1 ts_pc = SOME b1 /\
FLOOKUP s2 ts_pc = SOME b1' /\
FLOOKUP s1 ts_r5 = SOME a1 /\
FLOOKUP s2 ts_r5 = SOME a1' /\
State_st I1 s1 C1 F1 = state_list_to_state (example_mov_state_st_list a1 b1 r1 r5) /\
State_st I2 s2 C2 F2 = state_list_to_state (example_mov_state_st_list a1' b1' r1 r5) /\
b1 = b1' (* same initial value of PC *)
End
Theorem example_mov_cni_lemma1:
! r1 r5 ts_pc ts_r5 S1 S2 .
example_mov_secpol r1 r5 ts_pc ts_r5 S1 S2 ==>
trace_indist_IO S1 S2 ==>
example_mov_io r1 r5 ts_pc ts_r5 S1 S2
Proof
Cases_on `S1` >> Cases_on `S2` >>
fs [example_mov_secpol, example_mov_io] >>
METIS_TAC [noninterference_example_mov_trace]
QED
val init_stl = ``example_mov_state_st_list a1 b1 r1 r5``
val init_stl_ok = EQT_ELIM $ EVAL ``State_st_list_ok ^init_stl``
val init_str_act_addr_thms =
map (compute_str_act_addr init_stl init_stl_ok)
[
( ``10 : num``, ``res_REG``, ``r5 : word64`` ),
( ``12 : num``, ``res_PC``, ``val_zero`` )
]
val init_prog1 = ``example_mov_list a1 b1 r1 r5``
val init_prog2 = ``example_mov_list a1' b1' r1 r5``
val init_prog_preamble_size = ``6 : num``
val init_prog_preamble1 = rhs $ concl $ SIMP_RULE list_ss [] $
EVAL ``set (SEG ^init_prog_preamble_size 0 ^init_prog1)``
val init_prog_preamble2 = rhs $ concl $ SIMP_RULE list_ss [] $
EVAL ``set (SEG ^init_prog_preamble_size 0 ^init_prog2)``
Theorem init_st_wfs[local]:
! a1 b1 r1 r5 .
sem_expr = sem_expr_exe ==>
well_formed_state (state_list_to_state ^init_stl)
Proof
rw [] >>
`State_st_list_well_formed_ok ^init_stl`
by fs [State_st_list_well_formed_ok_example_mov_state_st_list] >>
Cases_on `^init_stl` >>
fs [State_st_list_well_formed_ok, init_stl_ok]
QED
Theorem example_mov_cni_lemma3:
! r1 r5 ts_pc ts_r5 S1 S2 .
example_mov_secpol r1 r5 ts_pc ts_r5 S1 S2 ==>
example_mov_io r1 r5 ts_pc ts_r5 S1 S2 ==>
example_mov_rel 7 8 9 10 11 12 13 14 r1 r5 ts_pc ts_r5 S1 S2
Proof
rw [] >>
Cases_on `S1` >> Cases_on `S2` >>
fs [example_mov_secpol, example_mov_io] >>
fs [example_mov_state_st_list, state_list_to_state] >>
fs [example_mov_rel] >>
exists_tac init_prog_preamble1 >>
exists_tac init_prog_preamble2 >>
rw [] >| [
ASSUME_TAC init_st_wfs >> fs [example_mov_state_st_list, state_list_to_state],
ASSUME_TAC init_st_wfs >> fs [example_mov_state_st_list, state_list_to_state],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
fs [val_true, val_false, val_zero, val_one] >>
EVAL_TAC,
fs [example_mov_list, example_mov_exe_init, example_mov] >>
fs [val_true, val_false, val_zero, val_one] >>
EVAL_TAC,
fs [FDOM_DEF, example_mov_store],
fs [bound_names_program, example_mov] >>
dsimp [EXTENSION, bound_name_instr, names_lt],
fs [bound_names_program, example_mov] >>
dsimp [EXTENSION, bound_name_instr, names_lt],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
fs [example_mov_list, example_mov_exe_init, example_mov] >>
rw [Completed] >>
fs [FDOM_DEF, example_mov_store],
dsimp [bound_names_program, bound_name_instr],
dsimp [bound_names_program, bound_name_instr],