-
${\color{red}T} im {\color{red}e}\ Se {\color{red}r} ies\ Extracti {\color{red}o} n\ for\ {\color{red}Po} lygonal\ {\color{red}Da} ta\ and\ Trend\ Analysis$
- 🦖T(h)eroPoDa+ - Time Series Extraction for Polygonal Data and Trend Analysis ⬛
- Toolkit created to extract median NDVI Time Series from Sentinel 2 data 🛰 stored in Google Earth Engine, perform gap filling and trend analysis
- Vinícius Vieira Mesquita - vinicius.mesquita@ufg.br (Main Theropoda)
- Leandro Leal Parente - leal.parente@gmail.com (Gap Filling and Trend Analysis implementation)
- 1.1.0
- Python 3.10
- GDAL
- Rasterio
- Pandas
- Geopandas
- Scikit-learn
- Joblib
- Psutil
- scikit-map
- Earthengine-api
- In this version of TheroPoDa (1.1.0), you could extract a series of median NDVI from Sentinel 2 for a Feature Collection of polygons simplily by passing arguments to the python code exemplified below:
argument | usage | example |
---|---|---|
--asset | Choosed Earth Engine Vector Asset | users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m |
--id_field | Vector column used as ID (use unique identifiers!) | ID_POINTS |
--output_name | Output filename | LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork |
If you don't know how to upload your vector data in Earth Engine, you can follow the tutorial clicking this link.
python main.py --asset users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m --id_field ID_POINTS --output_name LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork
- Implement arguments to choose other zonal reducers (i.e. percentile, variance, etc.)
- Implement arguments to choose other satellite data series (i.e. Landsat series, MODIS products)
- Implement a visualization of the processed data (or samples of it)