-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
166 lines (139 loc) · 5.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import json
import cv2
import time
import torch
import tqdm
import matplotlib.pyplot as plt
import torch.utils.data as Data
from torch.cuda.amp import autocast as autocast
from network.build import build_model
from network.dataset import Dataset
from config.cfg import parse
from metric.eval_mAPJ import eval_mAPJ
from metric.eval_sAP import eval_sAP
def to_device(data, device):
if isinstance(data, torch.Tensor):
return data.to(device)
if isinstance(data, dict):
for key in data:
if isinstance(data[key], torch.Tensor):
data[key] = data[key].to(device)
return data
if isinstance(data, list):
return [to_device(d, device) for d in data]
def convert_model(model, state_dict):
new_state_dict = model.state_dict()
for key, value in state_dict.items():
try:
C = len(value)
except:
continue
if 'shallow_res1' in key:
new_key = key.replace('shallow_res1', 'shallow_res')
new_state_dict[new_key][:C] = value
elif 'shallow_res2' in key:
new_key = key.replace('shallow_res2', 'shallow_res')
new_state_dict[new_key][C:] = value
elif 'encoders1' in key:
new_key = key.replace('encoders1', 'encoders')
new_state_dict[new_key][:C] = value
elif 'encoders2' in key:
new_key = key.replace('encoders2', 'encoders')
new_state_dict[new_key][C:] = value
else:
new_state_dict[key] = value
return new_state_dict
def save_lines(image, lines, filename, plot=False):
height, width = image.shape[:2]
fig = plt.figure()
fig.set_size_inches(width / height, 1, forward=False)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
plt.xlim([-0.5, width - 0.5])
plt.ylim([height - 0.5, -0.5])
plt.imshow(image[:, :, ::-1])
for pts in lines:
pts = pts - 0.5
plt.plot(pts[:, 0], pts[:, 1], color="orange", linewidth=0.5)
plt.scatter(pts[:, 0], pts[:, 1], color="#33FFFF", s=1.2, edgecolors="none", zorder=5)
plt.savefig(filename, dpi=height, bbox_inches=0)
if plot:
plt.show()
plt.close()
def test(model, loader, cfg, device):
# Test
model.eval()
results = []
start = time.time()
for images, annotations in tqdm.tqdm(loader, desc='test: '):
images, annotations = images.to(device), to_device(annotations, device)
with autocast():
outputs = model(images, annotations)
for output in outputs:
# Save image
if cfg.save_image:
if len(output['line_pred']):
line_pred = output['line_pred'].detach().cpu().numpy()
line_score = output['line_score'].detach().cpu().numpy()
filename = output['filename']
if cfg.with_clear:
src_file = os.path.join(cfg.dataset_path, 'images-clear', filename)
dst_file = os.path.join(cfg.output_path, 'images-clear', filename)
else:
src_file = os.path.join(cfg.dataset_path, 'images-blur', filename)
dst_file = os.path.join(cfg.output_path, 'images-blur', filename)
image = cv2.imread(src_file)
mask = line_score > cfg.score_thresh
line_pred = line_pred[mask]
save_lines(image, line_pred, dst_file)
if cfg.evaluate:
for k in output.keys():
if isinstance(output[k], torch.Tensor):
output[k] = output[k].tolist()
results.append(output)
end = time.time()
if cfg.evaluate:
with open(os.path.join(cfg.output_path, 'result.json'), 'w') as f:
json.dump(results, f)
print(f'FPS: {len(loader) / (end - start):.1f}')
gt_file = os.path.join(cfg.dataset_path, 'test.json')
pred_file = os.path.join(cfg.output_path, 'result.json')
mAPJ, P, R = eval_mAPJ(gt_file, pred_file)
msAP, P, R, sAP = eval_sAP(gt_file, pred_file, cfg)
print(f'metric: {sAP[0]:.1f} | {sAP[1]:.1f} | {sAP[2]:.1f} | {msAP:.1f} | {mAPJ:.1f}')
if __name__ == '__main__':
# Parameter
cfg = parse()
os.makedirs(cfg.output_path, exist_ok=True)
os.makedirs(cfg.figure_path, exist_ok=True)
if cfg.save_image:
if cfg.with_clear:
os.makedirs(os.path.join(cfg.output_path, 'images-clear'), exist_ok=True)
else:
os.makedirs(os.path.join(cfg.output_path, 'images-blur'), exist_ok=True)
# Use GPU or CPU
os.environ['CUDA_VISIBLE_DEVICES'] = str(cfg.gpu)
use_gpu = cfg.gpu >= 0 and torch.cuda.is_available()
device = torch.device(f'cuda:0' if use_gpu else 'cpu')
print('use_gpu: ', use_gpu)
# Load model
model = build_model(cfg).to(device)
model_filename = os.path.join(cfg.model_path, cfg.model_name)
checkpoint = torch.load(model_filename, map_location=device)
if 'model' in checkpoint.keys():
state_dict = checkpoint['model']
else:
state_dict = checkpoint
try:
model.load_state_dict(state_dict, strict=True)
except:
state_dict = convert_model(model, state_dict)
model.load_state_dict(state_dict, strict=True)
# Load dataset
dataset = Dataset(cfg, split='test')
loader = Data.DataLoader(dataset=dataset, batch_size=cfg.test_batch_size, num_workers=cfg.num_workers,
shuffle=False, collate_fn=dataset.collate, pin_memory=True)
# Test network
test(model, loader, cfg, device)