-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluator.py
305 lines (265 loc) · 10.4 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
.. module:: evaluator
:synopsis: model evaluator
.. moduleauthor:: Jiaming Shen, Ruiliang Lyu, Wenda Qiu
"""
import torch
import torch.nn.functional as F
import numpy as np
from collections import Counter, defaultdict
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, confusion_matrix
from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score, fowlkes_mallows_score
import itertools
import networkx as nx
def calculate_precision_recall_f1(tp, fp, fn):
""" Calculate precision, recall, and f1 score
:param tp: true positive number
:type tp: int
:param fp: false positive number
:type fp: int
:param fn: false negative number
:type fn: int
:return: (precision, recall, f1 score)
:rtype: tuple
"""
if (tp + fp) == 0:
precision = 0.0
else:
precision = 1.0 * tp / (tp + fp)
if (tp + fn) == 0:
recall = 0.0
else:
recall = 1.0 * tp / (tp + fn)
if (precision + recall) == 0:
f1 = 0.0
else:
f1 = 2.0 * (precision * recall) / (precision + recall)
return precision, recall, f1
def calculate_km_matching_score(weight_nm):
""" Calculate maximum weighted matching score
:param weight_nm: a similarity matrix
:type weight_nm: list
:return: weighted matching score
:rtype: float
"""
x = len(weight_nm)
y = len(weight_nm[0])
n = max(x, y)
NONE = -1e6
INF = 1e9
weight = [[NONE for j in range(n + 1)] for i in range(n + 1)]
for i in range(x):
for j in range(y):
weight[i + 1][j + 1] = weight_nm[i][j]
lx = [0. for i in range(n + 1)]
ly = [0. for i in range(n + 1)]
match = [-1 for i in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, n + 1):
lx[i] = max(lx[i], weight[i][j])
for root in range(1, n + 1):
vy = [False for i in range(n + 1)]
slack = [INF for i in range(n + 1)]
pre = [0 for i in range(n + 1)]
py = 0
match[0] = root
while True:
vy[py] = True
x = match[py]
delta = INF
yy = 0
for y in range(1, n + 1):
if not vy[y]:
if lx[x] + ly[y] - weight[x][y] < slack[y]:
slack[y] = lx[x] + ly[y] - weight[x][y]
pre[y] = py
if slack[y] < delta:
delta = slack[y]
yy = y
for y in range(n + 1):
if vy[y]:
lx[match[y]] -= delta
ly[y] += delta
else:
slack[y] -= delta
py = yy
if match[py] == -1: break
while True:
prev = pre[py]
match[py] = match[prev]
py = prev
if py == 0: break
score = 0.
for i in range(1, n + 1):
v = weight[match[i]][i]
if v > NONE:
score += v
return score
def end2end_evaluation_matching(groundtruth, result):
""" Evaluate the maximum weighted jaccard matching of groundtruth clustering and predicted clustering
:param groundtruth: a list of element lists representing the ground truth clustering
:type groundtruth: list
:param result: a list of element lists representing the model predicted clustering
:type result: list
:return: best matching score
:rtype: float
"""
n = len(groundtruth)
m = len(result)
G = nx.DiGraph()
S = n + m
T = n + m + 1
C = 1e8
for i in range(n):
for j in range(m):
s1 = groundtruth[i]
s2 = result[j]
s12 = set(s1) & set(s2)
weight = len(s12) / (len(s1) + len(s2) - len(s12))
weight = int(weight * C)
if weight > 0:
G.add_edge(i, n + j, capacity=1, weight=-weight)
for i in range(n):
G.add_edge(S, i, capacity=1, weight=0)
for i in range(m):
G.add_edge(i + n, T, capacity=1, weight=0)
mincostFlow = nx.algorithms.max_flow_min_cost(G, S, T)
mincost = nx.cost_of_flow(G, mincostFlow) / C
return -mincost / m
def evaluate_set_instance_prediction(model, dataset):
""" Evaluate model on the given dataset for set-instance pair prediction task
:param model: a trained set-instance classifier
:type model: SSPM
:param dataset: an ElementSet dataset with
:type dataset: ElementSet
:return: a dictionary of set-instance pair prediction metrics
:rtype: dict
"""
model.eval()
y_true = []
y_pred = []
set_size = []
# the following max_set_size and batch_size number need to be set such that one test batch can fit GPU memory
# TODO: make this value dynamtically changeable
max_set_size = 100
batch_size = int(len(dataset.sip_triplets) / 2)
for test_batch in dataset.get_test_batch(max_set_size=max_set_size, batch_size=batch_size):
# log set size for set-size-wise error analysis
batch_set_size = torch.sum((test_batch['set'] != 0), dim=1)
if model.device_id != -1:
batch_set_size = batch_set_size.to(torch.device("cpu"))
batch_set_size = list(batch_set_size.numpy())
set_size += batch_set_size
# start real prediction
mask = (test_batch['set'] != 0).float().unsqueeze(-1)
setEmbed = model.nodeTransform(test_batch['set']) * mask
setEmbed = model.node_pooler(setEmbed, dim=1)
instEmbed = model.nodeTransform(test_batch['inst']).squeeze_(1)
setScores = model.scorer(setEmbed)
setInstSumScores = model.scorer(setEmbed + instEmbed)
score_diff = setInstSumScores - setScores
prediction = F.sigmoid(score_diff)
if model.device_id != -1:
prediction = prediction.to(torch.device("cpu"))
cur_pred = (prediction > 0.5).squeeze().numpy()
y_pred += list(cur_pred)
target = test_batch['label'].float()
loss = model.criterion(score_diff, target).item()
if model.device_id != -1:
target = target.to(torch.device("cpu"))
cur_true = target.squeeze().numpy()
y_true += list(cur_true)
# obtain set-size-wise accuracy
set_size2num = Counter(set_size)
set_size2correct = defaultdict(int)
for t, p, s in zip(y_true, y_pred, set_size):
if t == p:
set_size2correct[s] += 1
set_size2accuracy = {}
for set_size in set_size2correct:
set_size2accuracy[set_size] = set_size2correct[set_size] / set_size2num[set_size]
y_true = np.array(y_true)
y_pred = np.array(y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
num_pred_pos = int(np.sum(y_pred))
num_pred_neg = y_true.shape[0] - num_pred_pos
tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels=[0, 1]).ravel()
accuracy = accuracy_score(y_true, y_pred)
model.train()
metrics = {"precision": precision, "recall": recall, "f1": f1, "num_pred_pos": num_pred_pos,
"num_pred_neg": num_pred_neg, "tn": tn, "fp": fp, "fn": fn, "tp": tp, "loss": loss,
"accuracy": accuracy}
return metrics
def evaluate_clustering(cls_pred, cls_true):
""" Evaluate clustering results
:param cls_pred: a list of element lists representing model predicted clustering
:type cls_pred: list
:param cls_true: a list of element lists representing the ground truth clustering
:type cls_true: list
:return: a dictionary of clustering evaluation metrics
:rtype: dict
"""
vocab_pred = set(itertools.chain(*cls_pred))
vocab_true = set(itertools.chain(*cls_true))
assert (vocab_pred == vocab_true), "Unmatched vocabulary during clustering evaluation"
# Cluster number
num_of_predict_clusters = len(cls_pred)
# Cluster size histogram
cluster_size2num_of_predicted_clusters = Counter([len(cluster) for cluster in cls_pred])
# Exact cluster prediction
pred_cluster_set = set([frozenset(cluster) for cluster in cls_pred])
gt_cluster_set = set([frozenset(cluster) for cluster in cls_true])
num_of_exact_set_prediction = len(pred_cluster_set.intersection(gt_cluster_set))
# Clustering metrics
word2rank = {}
wordrank2gt_cluster = {}
rank = 0
for cid, cluster in enumerate(cls_true):
for word in cluster:
if word not in word2rank:
word2rank[word] = rank
rank += 1
wordrank2gt_cluster[word2rank[word]] = cid
gt_cluster_vector = [ele[1] for ele in sorted(wordrank2gt_cluster.items())]
wordrank2pred_cluster = {}
for cid, cluster in enumerate(cls_pred):
for word in cluster:
wordrank2pred_cluster[word2rank[word]] = cid
pred_cluster_vector = [ele[1] for ele in sorted(wordrank2pred_cluster.items())]
ARI = adjusted_rand_score(gt_cluster_vector, pred_cluster_vector)
FMI = fowlkes_mallows_score(gt_cluster_vector, pred_cluster_vector)
NMI = normalized_mutual_info_score(gt_cluster_vector, pred_cluster_vector)
# Pair-based clustering metrics
def pair_set(labels):
S = set()
cluster_ids = np.unique(labels)
for cluster_id in cluster_ids:
cluster = np.where(labels == cluster_id)[0]
n = len(cluster) # number of elements in this cluster
if n >= 2:
for i in range(n):
for j in range(i + 1, n):
S.add((cluster[i], cluster[j]))
return S
F_S = pair_set(gt_cluster_vector)
F_K = pair_set(pred_cluster_vector)
if len(F_K) == 0:
pair_recall = 0
pair_precision = 0
pair_f1 = 0
else:
common_pairs = len(F_K & F_S)
pair_recall = common_pairs / len(F_S)
pair_precision = common_pairs / len(F_K)
eps = 1e-6
pair_f1 = 2 * pair_precision * pair_recall / (pair_precision + pair_recall + eps)
# KM matching
mwm_jaccard = end2end_evaluation_matching(cls_true, cls_pred)
metrics = {"ARI": ARI, "FMI": FMI, "NMI": NMI, "pair_recall": pair_recall, "pair_precision": pair_precision,
"pair_f1": pair_f1, "predicted_clusters": cls_pred, "num_of_predicted_clusters": num_of_predict_clusters,
"cluster_size2num_of_predicted_clusters": cluster_size2num_of_predicted_clusters,
"num_of_exact_set_prediction": num_of_exact_set_prediction,
"maximum_weighted_match_jaccard": mwm_jaccard}
return metrics