-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathDataGeneratorClass.py
78 lines (68 loc) · 2.43 KB
/
DataGeneratorClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import cv2 as cv
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.python.keras.utils import data_utils
class DataGeneratorClass(data_utils.Sequence):
def __init__(
self,
df,
batch_size=16,
subset="train",
shuffle=True,
preprocess=None,
info={},
max_width=80,
max_height=80,
num_classes=5,
VGG=True,
augmentation=None,
):
super().__init__()
self.df = df
self.indexes = np.asarray(self.df.index)
self.shuffle = shuffle
self.subset = subset
self.batch_size = batch_size
self.preprocess = preprocess
self.info = info
self.max_width = max_width
self.max_height = max_height
self.num_classes = num_classes
self.VGG = VGG
self.augmentation = augmentation
self.datagen = self.datagen()
self.on_epoch_end()
def __len__(self):
return int(np.ceil(len(self.df) / float(self.batch_size)))
def on_epoch_end(self):
if self.shuffle:
np.random.shuffle(self.indexes)
def datagen(self):
return ImageDataGenerator()
def __getitem__(self, index):
X = np.empty(
(self.batch_size, self.max_height, self.max_width, 3),
dtype=np.float32,
)
y = np.empty((self.batch_size, self.num_classes), dtype=np.float32,)
indexes = self.indexes[
index * self.batch_size : (index + 1) * self.batch_size
]
batch_data = self.df.iloc[indexes]
for i, row in enumerate(batch_data.iterrows()):
filename = row[1]["filename"]
self.info[index * self.batch_size + i] = filename
img = cv.cvtColor(cv.imread(filename), cv.COLOR_BGR2RGB)
if self.VGG:
X[i,] = preprocess_input(np.asarray(img))
else:
# Other preprocessing to be implemented in correspondence with chosen model
X[i,] = img
if self.subset == "train":
y[i,] = row[1]["class_one_hot"]
if self.preprocess is not None:
X = self.preprocess(X)
# [None] is used to silence warning
# https://stackoverflow.com/questions/59317919/warningtensorflowsample-weight-modes-were-coerced-from-to
return X, y, [None]