-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.py
33 lines (29 loc) · 1.38 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
class ReplayBuffer:
def __init__(self, input_shape, n_actions, buffer_length=1000):
self.buffer_length = buffer_length
self.mem_counter = 0
self.state_memory = np.zeros((self.buffer_length, *input_shape))
self.next_state_memory = np.zeros((self.buffer_length, *input_shape))
self.action_memory = np.zeros((self.buffer_length, *n_actions))
self.reward_memory = np.zeros((self.buffer_length))
self.terminal_memory = np.zeros(
self.buffer_length, dtype=bool
) # use as mask for critic
def store_transition(self, state, action, reward, next_state, done):
index = self.mem_counter % self.buffer_length # clever...
self.state_memory[index] = state
self.next_state_memory[index] = next_state
self.reward_memory[index] = reward
self.action_memory[index] = action
self.terminal_memory[index] = done
self.mem_counter += 1
def sample(self, batch_size):
mem_size = min(self.mem_counter, self.buffer_length)
batch = np.random.choice(mem_size, batch_size)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
next_states = self.next_state_memory[batch]
dones = self.terminal_memory[batch]
return states, actions, rewards, next_states, dones