-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
152 lines (126 loc) · 6.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
import random
import datetime
import numpy as np
import torch
import torch.utils.data
import torch.backends.cudnn as cudnn
import utils
import training
from model import builder
from config import get_parser
from util.data import get_dataset
from util.misc import is_distributed, get_criterion, get_transform, batch_evaluate
from util.optimizer import get_optimizer
def main(args, distributed):
dataset, num_classes = get_dataset("train",
get_transform(args=args),
args=args)
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
dataset_test, _ = get_dataset("val",
get_transform(args=args),
args=args)
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built val dataset.")
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks,
rank=global_rank,
shuffle=True, drop_last=True)
# test_sampler = torch.utils.data.SequentialSampler(dataset_test)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False, drop_last=False)
shuffle = False
else:
train_sampler = None
test_sampler = None
shuffle = True
# data loader
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size, shuffle=shuffle,
sampler=train_sampler, num_workers=args.workers, pin_memory=args.pin_mem,
drop_last=True, collate_fn=utils.collate_func)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size, sampler=test_sampler, num_workers=args.workers)
# model initialization
print(args.model)
criterion = get_criterion(args.model)()
single_model = builder.__dict__[args.model](pretrained=args.pretrained_swin_weights,
args=args, criterion=criterion)
single_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(single_model)
print(single_model)
single_model.cuda()
if distributed:
model = torch.nn.parallel.DistributedDataParallel(single_model, device_ids=[args.local_rank],
find_unused_parameters=True)
else:
model = torch.nn.DataParallel(single_model)
# resume training
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
single_model.load_state_dict(checkpoint['model'])
# optimizer
optimizer = get_optimizer(single_model, args)
loss_scaler = utils.NativeScalerWithGradNormCount()
clip_grad = args.clip_value if args.clip_grads else None
total_iters = (len(data_loader) * args.epochs)
lr_scheduler = utils.WarmUpPolyLRScheduler(optimizer, total_iters, power=0.9, min_lr=args.min_lr,
warmup=args.warmup, warmup_iters=args.warmup_iters,
warmup_ratio=args.warmup_ratio)
# housekeeping
start_time = time.time()
best_oIoU = -0.1
# resume training (optimizer, lr scheduler, and the epoch)
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
resume_epoch = checkpoint['epoch']
else:
resume_epoch = -999
trainer = training.train_one_epoch
# training loops
for epoch in range(max(0, resume_epoch + 1), args.epochs):
if distributed:
data_loader.sampler.set_epoch(epoch)
trainer(model, optimizer, data_loader, lr_scheduler, epoch, args.print_freq, loss_scaler, clip_grad, args)
if epoch % 10 == 0 or epoch >= args.epochs - 16:
iou, overallIoU = batch_evaluate(model, data_loader_test)
print('Average object IoU {}'.format(iou))
print('Overall IoU {}'.format(overallIoU))
save_checkpoint = (best_oIoU < overallIoU)
if save_checkpoint:
print('Better epoch: {}\n'.format(epoch))
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict(), 'scaler': loss_scaler.state_dict()}
utils.save_on_master(dict_to_save, os.path.join(args.output_dir,
'model_best_{}.pth'.format(args.model_id)))
best_oIoU = overallIoU
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict(), 'scaler': loss_scaler.state_dict()}
# summarize
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
seed = args.seed
deterministic = args.deterministic
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
cudnn.deterministic = True
cudnn.benchmark = False
else:
cudnn.benchmark = True
# set up distributed learning
distributed = is_distributed()
if distributed:
utils.init_distributed_mode(args)
print(f'SEED: {args.seed}')
print('Image size: {}'.format(str(args.img_size)))
main(args, distributed)