forked from starsuzi/DAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdense_retriever.py
460 lines (389 loc) · 14.9 KB
/
dense_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Command line tool to get dense results and validate them
"""
import glob
import json
import logging
import pickle
import time
from typing import List, Tuple, Dict, Iterator
import hydra
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from torch import Tensor as T
from torch import nn
from dar.data.biencoder_data import RepTokenSelector
from dar.data.qa_validation import calculate_matches, calculate_chunked_matches
from dar.data.retriever_data import KiltCsvCtxSrc, TableChunk
from dar.indexer.faiss_indexers import (
DenseIndexer,
)
from dar.models import init_biencoder_components
from dar.models.biencoder import BiEncoder, _select_span_with_token
from dar.options import setup_logger, setup_cfg_gpu, set_cfg_params_from_state
from dar.utils.data_utils import Tensorizer
from dar.utils.model_utils import (
setup_for_distributed_mode,
get_model_obj,
load_states_from_checkpoint,
)
logger = logging.getLogger()
setup_logger(logger)
def generate_question_vectors(
question_encoder: torch.nn.Module,
tensorizer: Tensorizer,
questions: List[str],
bsz: int,
query_token: str = None,
selector: RepTokenSelector = None,
) -> T:
n = len(questions)
query_vectors = []
with torch.no_grad():
for j, batch_start in enumerate(range(0, n, bsz)):
batch_questions = questions[batch_start : batch_start + bsz]
if query_token:
# TODO: tmp workaround for EL, remove or revise
if query_token == "[START_ENT]":
batch_token_tensors = [
_select_span_with_token(q, tensorizer, token_str=query_token)
for q in batch_questions
]
else:
batch_token_tensors = [
tensorizer.text_to_tensor(" ".join([query_token, q]))
for q in batch_questions
]
else:
batch_token_tensors = [
tensorizer.text_to_tensor(q) for q in batch_questions
]
q_ids_batch = torch.stack(batch_token_tensors, dim=0).cuda()
q_seg_batch = torch.zeros_like(q_ids_batch).cuda()
q_attn_mask = tensorizer.get_attn_mask(q_ids_batch)
if selector:
rep_positions = selector.get_positions(q_ids_batch, tensorizer)
_, out, _ = BiEncoder.get_representation(
question_encoder,
q_ids_batch,
q_seg_batch,
q_attn_mask,
representation_token_pos=rep_positions,
)
else:
_, out, _ = question_encoder(q_ids_batch, q_seg_batch, q_attn_mask)
query_vectors.extend(out.cpu().split(1, dim=0))
if len(query_vectors) % 100 == 0:
logger.info("Encoded queries %d", len(query_vectors))
query_tensor = torch.cat(query_vectors, dim=0)
logger.info("Total encoded queries tensor %s", query_tensor.size())
assert query_tensor.size(0) == len(questions)
return query_tensor
class DenseRetriever(object):
def __init__(
self, question_encoder: nn.Module, batch_size: int, tensorizer: Tensorizer
):
self.question_encoder = question_encoder
self.batch_size = batch_size
self.tensorizer = tensorizer
self.selector = None
def generate_question_vectors(
self, questions: List[str], query_token: str = None
) -> T:
bsz = self.batch_size
self.question_encoder.eval()
return generate_question_vectors(
self.question_encoder,
self.tensorizer,
questions,
bsz,
query_token=query_token,
selector=self.selector,
)
class LocalFaissRetriever(DenseRetriever):
"""
Does passage retrieving over the provided index and question encoder
"""
def __init__(
self,
question_encoder: nn.Module,
batch_size: int,
tensorizer: Tensorizer,
index: DenseIndexer,
):
super().__init__(question_encoder, batch_size, tensorizer)
self.index = index
def index_encoded_data(
self,
vector_files: List[str],
buffer_size: int,
path_id_prefixes: List = None,
):
"""
Indexes encoded passages takes form a list of files
:param vector_files: file names to get passages vectors from
:param buffer_size: size of a buffer (amount of passages) to send for the indexing at once
:return:
"""
buffer = []
for i, item in enumerate(
iterate_encoded_files(vector_files, path_id_prefixes=path_id_prefixes)
):
buffer.append(item)
if 0 < buffer_size == len(buffer):
self.index.index_data(buffer)
buffer = []
self.index.index_data(buffer)
logger.info("Data indexing completed.")
def get_top_docs(
self, query_vectors: np.array, top_docs: int = 100
) -> List[Tuple[List[object], List[float]]]:
"""
Does the retrieval of the best matching passages given the query vectors batch
:param query_vectors:
:param top_docs:
:return:
"""
time0 = time.time()
results = self.index.search_knn(query_vectors, top_docs)
logger.info("index search time: %f sec.", time.time() - time0)
self.index = None
return results
def validate(
passages: Dict[object, Tuple[str, str]],
answers: List[List[str]],
result_ctx_ids: List[Tuple[List[object], List[float]]],
workers_num: int,
match_type: str,
) -> List[List[bool]]:
match_stats = calculate_matches(
passages, answers, result_ctx_ids, workers_num, match_type
)
top_k_hits = match_stats.top_k_hits
logger.info("Validation results: top k documents hits %s", top_k_hits)
top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits]
logger.info("Validation results: top k documents hits accuracy %s", top_k_hits)
return match_stats.questions_doc_hits
def save_results(
passages: Dict[object, Tuple[str, str]],
questions: List[str],
answers: List[List[str]],
top_passages_and_scores: List[Tuple[List[object], List[float]]],
per_question_hits: List[List[bool]],
out_file: str,
):
# join passages text with the result ids, their questions and assigning has|no answer labels
merged_data = []
# assert len(per_question_hits) == len(questions) == len(answers)
for i, q in enumerate(questions):
q_answers = answers[i]
results_and_scores = top_passages_and_scores[i]
hits = per_question_hits[i]
docs = [passages[doc_id] for doc_id in results_and_scores[0]]
scores = [str(score) for score in results_and_scores[1]]
ctxs_num = len(hits)
merged_data.append(
{
"question": q,
"answers": q_answers,
"ctxs": [
{
"id": results_and_scores[0][c],
"title": docs[c][1],
"text": docs[c][0],
"score": scores[c],
"has_answer": hits[c],
}
for c in range(ctxs_num)
],
}
)
with open(out_file, "w") as writer:
writer.write(json.dumps(merged_data, indent=4) + "\n")
logger.info("Saved results * scores to %s", out_file)
def iterate_encoded_files(
vector_files: list, path_id_prefixes: List = None
) -> Iterator[Tuple]:
for i, file in enumerate(vector_files):
logger.info("Reading file %s", file)
id_prefix = None
if path_id_prefixes:
id_prefix = path_id_prefixes[i]
with open(file, "rb") as reader:
doc_vectors = pickle.load(reader)
for doc in doc_vectors:
doc = list(doc)
if id_prefix and not str(doc[0]).startswith(id_prefix):
doc[0] = id_prefix + str(doc[0])
yield doc
def validate_tables(
passages: Dict[object, TableChunk],
answers: List[List[str]],
result_ctx_ids: List[Tuple[List[object], List[float]]],
workers_num: int,
match_type: str,
) -> List[List[bool]]:
match_stats = calculate_chunked_matches(
passages, answers, result_ctx_ids, workers_num, match_type
)
top_k_chunk_hits = match_stats.top_k_chunk_hits
top_k_table_hits = match_stats.top_k_table_hits
logger.info("Validation results: top k documents hits %s", top_k_chunk_hits)
top_k_hits = [v / len(result_ctx_ids) for v in top_k_chunk_hits]
logger.info("Validation results: top k table chunk hits accuracy %s", top_k_hits)
logger.info("Validation results: top k tables hits %s", top_k_table_hits)
top_k_table_hits = [v / len(result_ctx_ids) for v in top_k_table_hits]
logger.info("Validation results: top k tables accuracy %s", top_k_table_hits)
return match_stats.top_k_chunk_hits
@hydra.main(config_path="conf", config_name="dense_retriever")
def main(cfg: DictConfig):
cfg = setup_cfg_gpu(cfg)
logger.info("CFG (after gpu configuration):")
logger.info("%s", OmegaConf.to_yaml(cfg))
saved_state = load_states_from_checkpoint(cfg.model_file)
set_cfg_params_from_state(saved_state.encoder_params, cfg)
tensorizer, encoder, _ = init_biencoder_components(
cfg.encoder.encoder_model_type, cfg, inference_only=True
)
encoder_path = cfg.encoder_path
if encoder_path:
logger.info("Selecting encoder: %s", encoder_path)
encoder = getattr(encoder, encoder_path)
else:
logger.info("Selecting standard question encoder")
encoder = encoder.question_model
encoder, _ = setup_for_distributed_mode(
encoder, None, cfg.device, cfg.n_gpu, cfg.local_rank, cfg.fp16
)
encoder.eval()
# load weights from the model file
model_to_load = get_model_obj(encoder)
logger.info("Loading saved model state ...")
encoder_prefix = (encoder_path if encoder_path else "question_model") + "."
prefix_len = len(encoder_prefix)
logger.info("Encoder state prefix %s", encoder_prefix)
question_encoder_state = {
key[prefix_len:]: value
for (key, value) in saved_state.model_dict.items()
if key.startswith(encoder_prefix)
}
# TODO: long term HF state compatibility fix
model_to_load.load_state_dict(question_encoder_state, strict=False)
vector_size = model_to_load.get_out_size()
logger.info("Encoder vector_size=%d", vector_size)
# get questions & answers
questions = []
question_answers = []
if not cfg.qa_dataset:
logger.warning("Please specify qa_dataset to use")
return
ds_key = cfg.qa_dataset
logger.info("qa_dataset: %s", ds_key)
qa_src = hydra.utils.instantiate(cfg.datasets[ds_key])
qa_src.load_data()
for ds_item in qa_src.data:
question, answers = ds_item.query, ds_item.answers
questions.append(question)
question_answers.append(answers)
index = hydra.utils.instantiate(cfg.indexers[cfg.indexer])
logger.info("Index class %s ", type(index))
index_buffer_sz = index.buffer_size
index.init_index(vector_size)
retriever = LocalFaissRetriever(encoder, cfg.batch_size, tensorizer, index)
logger.info("Using special token %s", qa_src.special_query_token)
questions_tensor = retriever.generate_question_vectors(
questions, query_token=qa_src.special_query_token
)
if qa_src.selector:
logger.info("Using custom representation token selector")
retriever.selector = qa_src.selector
id_prefixes = []
ctx_sources = []
for ctx_src in cfg.ctx_datatsets:
ctx_src = hydra.utils.instantiate(cfg.ctx_sources[ctx_src])
id_prefixes.append(ctx_src.id_prefix)
ctx_sources.append(ctx_src)
logger.info("id_prefixes per dataset: %s", id_prefixes)
# index all passages
ctx_files_patterns = cfg.encoded_ctx_files
index_path = cfg.index_path
logger.info("ctx_files_patterns: %s", ctx_files_patterns)
if ctx_files_patterns:
assert len(ctx_files_patterns) == len(
id_prefixes
), "ctx len={} pref leb={}".format(len(ctx_files_patterns), len(id_prefixes))
else:
assert (
index_path
), "Either encoded_ctx_files or index_path parameter should be set."
input_paths = []
path_id_prefixes = []
for i, pattern in enumerate(ctx_files_patterns):
pattern_files = glob.glob(pattern)
pattern_id_prefix = id_prefixes[i]
input_paths.extend(pattern_files)
path_id_prefixes.extend([pattern_id_prefix] * len(pattern_files))
logger.info("Embeddings files id prefixes: %s", path_id_prefixes)
if index_path and index.index_exists(index_path):
logger.info("Index path: %s", index_path)
retriever.index.deserialize(index_path)
else:
logger.info("Reading all passages data from files: %s", input_paths)
retriever.index_encoded_data(
input_paths, index_buffer_sz, path_id_prefixes=path_id_prefixes
)
if index_path:
retriever.index.serialize(index_path)
# get top k results
top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(), cfg.n_docs)
# we no longer need the index
retriever = None
all_passages = {}
for ctx_src in ctx_sources:
ctx_src.load_data_to(all_passages)
if len(all_passages) == 0:
raise RuntimeError(
"No passages data found. Please specify ctx_file param properly."
)
if cfg.validate_as_tables:
questions_doc_hits = validate_tables(
all_passages,
question_answers,
top_ids_and_scores,
cfg.validation_workers,
cfg.match,
)
else:
questions_doc_hits = validate(
all_passages,
question_answers,
top_ids_and_scores,
cfg.validation_workers,
cfg.match,
)
if cfg.out_file:
save_results(
all_passages,
questions,
question_answers,
top_ids_and_scores,
questions_doc_hits,
cfg.out_file,
)
if cfg.kilt_out_file:
kilt_ctx = next(
iter([ctx for ctx in ctx_sources if isinstance(ctx, KiltCsvCtxSrc)]), None
)
if not kilt_ctx:
raise RuntimeError("No Kilt compatible context file provided")
assert hasattr(cfg, "kilt_out_file")
kilt_ctx.convert_to_kilt(qa_src.kilt_gold_file, cfg.out_file, cfg.kilt_out_file)
if __name__ == "__main__":
main()