forked from starsuzi/DAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dense_encoder.py
871 lines (741 loc) · 30 KB
/
train_dense_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Pipeline to train DPR Biencoder
"""
import logging
import math
import os
import random
import sys
import time
from typing import Tuple
import hydra
import torch
from omegaconf import DictConfig, OmegaConf
from torch import Tensor as T
from torch import nn
from dar.models import init_biencoder_components
from dar.models.biencoder import BiEncoder, BiEncoderNllLoss, BiEncoderBatch, BiEncoderMixupNllLoss
from dar.options import (
setup_cfg_gpu,
set_seed,
get_encoder_params_state_from_cfg,
set_cfg_params_from_state,
setup_logger,
)
from dar.utils.conf_utils import BiencoderDatasetsCfg
from dar.utils.data_utils import (
ShardedDataIterator,
Tensorizer,
MultiSetDataIterator,
)
from dar.utils.dist_utils import all_gather_list
from dar.utils.model_utils import (
setup_for_distributed_mode,
move_to_device,
get_schedule_linear,
CheckpointState,
get_model_file,
get_model_obj,
load_states_from_checkpoint,
)
logger = logging.getLogger()
setup_logger(logger)
class BiEncoderTrainer(object):
"""
BiEncoder training pipeline component. Can be used to initiate or resume training and validate the trained model
using either binary classification's NLL loss or average rank of the question's gold passages across dataset
provided pools of negative passages. For full IR accuracy evaluation, please see generate_dense_embeddings.py
and dense_retriever.py CLI tools.
"""
def __init__(self, cfg: DictConfig):
self.shard_id = cfg.local_rank if cfg.local_rank != -1 else 0
self.distributed_factor = cfg.distributed_world_size or 1
logger.info("***** Initializing components for training *****")
# if model file is specified, encoder parameters from saved state should be used for initialization
model_file = get_model_file(cfg, cfg.checkpoint_file_name)
saved_state = None
if model_file:
saved_state = load_states_from_checkpoint(model_file)
set_cfg_params_from_state(saved_state.encoder_params, cfg)
tensorizer, model, optimizer = init_biencoder_components(
cfg.encoder.encoder_model_type, cfg
)
model, optimizer = setup_for_distributed_mode(
model,
optimizer,
cfg.device,
cfg.n_gpu,
cfg.local_rank,
cfg.fp16,
cfg.fp16_opt_level,
)
self.biencoder = model
self.optimizer = optimizer
self.tensorizer = tensorizer
self.start_epoch = 0
self.start_batch = 0
self.scheduler_state = None
self.best_validation_result = None
self.best_cp_name = None
self.cfg = cfg
self.ds_cfg = BiencoderDatasetsCfg(cfg)
if saved_state:
self._load_saved_state(saved_state)
self.dev_iterator = None
def get_data_iterator(
self,
batch_size: int,
is_train_set: bool,
shuffle=True,
shuffle_seed: int = 0,
offset: int = 0,
rank: int = 0,
):
hydra_datasets = (
self.ds_cfg.train_datasets if is_train_set else self.ds_cfg.dev_datasets
)
sampling_rates = self.ds_cfg.sampling_rates
logger.info(
"Initializing task/set data %s",
self.ds_cfg.train_datasets_names
if is_train_set
else self.ds_cfg.dev_datasets_names,
)
# randomized data loading to avoid file system congestion
datasets_list = [ds for ds in hydra_datasets]
rnd = random.Random(rank)
rnd.shuffle(datasets_list)
[ds.load_data() for ds in datasets_list]
sharded_iterators = [
ShardedDataIterator(
ds,
shard_id=self.shard_id,
num_shards=self.distributed_factor,
batch_size=batch_size,
shuffle=shuffle,
shuffle_seed=shuffle_seed,
offset=offset,
)
for ds in hydra_datasets
]
return MultiSetDataIterator(
sharded_iterators,
shuffle_seed,
shuffle,
sampling_rates=sampling_rates if is_train_set else [1],
rank=rank,
)
def run_train(self):
cfg = self.cfg
train_iterator = self.get_data_iterator(
cfg.train.batch_size,
True,
shuffle=True,
shuffle_seed=cfg.seed,
offset=self.start_batch,
rank=cfg.local_rank,
)
max_iterations = train_iterator.get_max_iterations()
logger.info(" Total iterations per epoch=%d", max_iterations)
if max_iterations == 0:
logger.warning("No data found for training.")
return
updates_per_epoch = (
train_iterator.max_iterations // cfg.train.gradient_accumulation_steps
)
total_updates = updates_per_epoch * cfg.train.num_train_epochs
logger.info(" Total updates=%d", total_updates)
warmup_steps = cfg.train.warmup_steps
if self.scheduler_state:
# TODO: ideally we'd want to just call
# scheduler.load_state_dict(self.scheduler_state)
# but it doesn't work properly as of now
logger.info("Loading scheduler state %s", self.scheduler_state)
shift = int(self.scheduler_state["last_epoch"])
logger.info("Steps shift %d", shift)
scheduler = get_schedule_linear(
self.optimizer,
warmup_steps,
total_updates,
steps_shift=shift,
)
else:
scheduler = get_schedule_linear(
self.optimizer, warmup_steps, total_updates
)
eval_step = math.ceil(updates_per_epoch / cfg.train.eval_per_epoch)
logger.info(" Eval step = %d", eval_step)
logger.info("***** Training *****")
for epoch in range(self.start_epoch, int(cfg.train.num_train_epochs)):
logger.info("***** Epoch %d *****", epoch)
self._train_epoch(scheduler, epoch, eval_step, train_iterator)
if cfg.local_rank in [-1, 0]:
logger.info(
"Training finished. Best validation checkpoint %s", self.best_cp_name
)
def validate_and_save(self, epoch: int, iteration: int, scheduler):
cfg = self.cfg
# for distributed mode, save checkpoint for only one process
save_cp = cfg.local_rank in [-1, 0]
if epoch == cfg.val_av_rank_start_epoch:
self.best_validation_result = None
if not cfg.dev_datasets:
validation_loss = 0
else:
if epoch >= cfg.val_av_rank_start_epoch:
validation_loss = self.validate_average_rank()
else:
validation_loss = self.validate_nll()
if save_cp:
cp_name = self._save_checkpoint(scheduler, epoch, iteration)
logger.info("Saved checkpoint to %s", cp_name)
if validation_loss < (self.best_validation_result or validation_loss + 1):
self.best_validation_result = validation_loss
self.best_cp_name = cp_name
logger.info("New Best validation checkpoint %s", cp_name)
def validate_nll(self) -> float:
logger.info("NLL validation ...")
cfg = self.cfg
self.biencoder.eval()
if not self.dev_iterator:
self.dev_iterator = self.get_data_iterator(
cfg.train.dev_batch_size, False, shuffle=False, rank=cfg.local_rank
)
data_iterator = self.dev_iterator
total_loss = 0.0
start_time = time.time()
total_correct_predictions = 0
num_hard_negatives = cfg.train.hard_negatives
num_other_negatives = cfg.train.other_negatives
log_result_step = cfg.train.log_batch_step
batches = 0
dataset = 0
for i, samples_batch in enumerate(data_iterator.iterate_ds_data()):
if isinstance(samples_batch, Tuple):
samples_batch, dataset = samples_batch
logger.info("Eval step: %d ,rnk=%s", i, cfg.local_rank)
biencoder_input = BiEncoder.create_biencoder_input2(
samples_batch,
self.tensorizer,
True,
num_hard_negatives,
num_other_negatives,
shuffle=False,
)
# get the token to be used for representation selection
ds_cfg = self.ds_cfg.dev_datasets[dataset]
rep_positions = ds_cfg.selector.get_positions(
biencoder_input.question_ids, self.tensorizer
)
encoder_type = ds_cfg.encoder_type
loss, correct_cnt = _do_biencoder_fwd_pass(
self.biencoder,
biencoder_input,
self.tensorizer,
cfg,
encoder_type=encoder_type,
rep_positions=rep_positions,
)
total_loss += loss.item()
total_correct_predictions += correct_cnt
batches += 1
if (i + 1) % log_result_step == 0:
logger.info(
"Eval step: %d , used_time=%f sec., loss=%f ",
i,
time.time() - start_time,
loss.item(),
)
total_loss = total_loss / batches
total_samples = batches * cfg.train.dev_batch_size * self.distributed_factor
correct_ratio = float(total_correct_predictions / total_samples)
logger.info(
"NLL Validation: loss = %f. correct prediction ratio %d/%d ~ %f",
total_loss,
total_correct_predictions,
total_samples,
correct_ratio,
)
return total_loss
def validate_average_rank(self) -> float:
"""
Validates biencoder model using each question's gold passage's rank across the set of passages from the dataset.
It generates vectors for specified amount of negative passages from each question (see --val_av_rank_xxx params)
and stores them in RAM as well as question vectors.
Then the similarity scores are calculted for the entire
num_questions x (num_questions x num_passages_per_question) matrix and sorted per quesrtion.
Each question's gold passage rank in that sorted list of scores is averaged across all the questions.
:return: averaged rank number
"""
logger.info("Average rank validation ...")
cfg = self.cfg
self.biencoder.eval()
distributed_factor = self.distributed_factor
if not self.dev_iterator:
self.dev_iterator = self.get_data_iterator(
cfg.train.dev_batch_size, False, shuffle=False, rank=cfg.local_rank
)
data_iterator = self.dev_iterator
sub_batch_size = cfg.train.val_av_rank_bsz
sim_score_f = BiEncoderNllLoss.get_similarity_function()
q_represenations = []
ctx_represenations = []
positive_idx_per_question = []
num_hard_negatives = cfg.train.val_av_rank_hard_neg
num_other_negatives = cfg.train.val_av_rank_other_neg
log_result_step = cfg.train.log_batch_step
dataset = 0
for i, samples_batch in enumerate(data_iterator.iterate_ds_data()):
# samples += 1
if (
len(q_represenations)
> cfg.train.val_av_rank_max_qs / distributed_factor
):
break
if isinstance(samples_batch, Tuple):
samples_batch, dataset = samples_batch
biencoder_input = BiEncoder.create_biencoder_input2(
samples_batch,
self.tensorizer,
True,
num_hard_negatives,
num_other_negatives,
shuffle=False,
)
total_ctxs = len(ctx_represenations)
ctxs_ids = biencoder_input.context_ids
ctxs_segments = biencoder_input.ctx_segments
bsz = ctxs_ids.size(0)
# get the token to be used for representation selection
ds_cfg = self.ds_cfg.dev_datasets[dataset]
encoder_type = ds_cfg.encoder_type
rep_positions = ds_cfg.selector.get_positions(
biencoder_input.question_ids, self.tensorizer
)
# split contexts batch into sub batches since it is supposed to be too large to be processed in one batch
for j, batch_start in enumerate(range(0, bsz, sub_batch_size)):
q_ids, q_segments = (
(biencoder_input.question_ids, biencoder_input.question_segments)
if j == 0
else (None, None)
)
if j == 0 and cfg.n_gpu > 1 and q_ids.size(0) == 1:
# if we are in DP (but not in DDP) mode, all model input tensors should have batch size >1 or 0,
# otherwise the other input tensors will be split but only the first split will be called
continue
ctx_ids_batch = ctxs_ids[batch_start : batch_start + sub_batch_size]
ctx_seg_batch = ctxs_segments[
batch_start : batch_start + sub_batch_size
]
q_attn_mask = self.tensorizer.get_attn_mask(q_ids)
ctx_attn_mask = self.tensorizer.get_attn_mask(ctx_ids_batch)
with torch.no_grad():
q_dense, ctx_dense = self.biencoder(
q_ids,
q_segments,
q_attn_mask,
ctx_ids_batch,
ctx_seg_batch,
ctx_attn_mask,
encoder_type=encoder_type,
representation_token_pos=rep_positions,
)
if q_dense is not None:
q_represenations.extend(q_dense.cpu().split(1, dim=0))
ctx_represenations.extend(ctx_dense.cpu().split(1, dim=0))
batch_positive_idxs = biencoder_input.is_positive
positive_idx_per_question.extend(
[total_ctxs + v for v in batch_positive_idxs]
)
if (i + 1) % log_result_step == 0:
logger.info(
"Av.rank validation: step %d, computed ctx_vectors %d, q_vectors %d",
i,
len(ctx_represenations),
len(q_represenations),
)
ctx_represenations = torch.cat(ctx_represenations, dim=0)
q_represenations = torch.cat(q_represenations, dim=0)
logger.info(
"Av.rank validation: total q_vectors size=%s", q_represenations.size()
)
logger.info(
"Av.rank validation: total ctx_vectors size=%s", ctx_represenations.size()
)
q_num = q_represenations.size(0)
assert q_num == len(positive_idx_per_question)
scores = sim_score_f(q_represenations, ctx_represenations)
values, indices = torch.sort(scores, dim=1, descending=True)
rank = 0
for i, idx in enumerate(positive_idx_per_question):
# aggregate the rank of the known gold passage in the sorted results for each question
gold_idx = (indices[i] == idx).nonzero()
rank += gold_idx.item()
if distributed_factor > 1:
# each node calcuated its own rank, exchange the information between node and calculate the "global" average rank
# NOTE: the set of passages is still unique for every node
eval_stats = all_gather_list([rank, q_num], max_size=100)
for i, item in enumerate(eval_stats):
remote_rank, remote_q_num = item
if i != cfg.local_rank:
rank += remote_rank
q_num += remote_q_num
av_rank = float(rank / q_num)
logger.info(
"Av.rank validation: average rank %s, total questions=%d", av_rank, q_num
)
return av_rank
def _train_epoch(
self,
scheduler,
epoch: int,
eval_step: int,
train_data_iterator: MultiSetDataIterator,
):
cfg = self.cfg
rolling_train_loss = 0.0
epoch_loss = 0
epoch_correct_predictions = 0
log_result_step = cfg.train.log_batch_step
rolling_loss_step = cfg.train.train_rolling_loss_step
num_hard_negatives = cfg.train.hard_negatives
num_other_negatives = cfg.train.other_negatives
seed = cfg.seed
self.biencoder.train()
epoch_batches = train_data_iterator.max_iterations
data_iteration = 0
dataset = 0
for i, samples_batch in enumerate(
train_data_iterator.iterate_ds_data(epoch=epoch)
):
if isinstance(samples_batch, Tuple):
samples_batch, dataset = samples_batch
ds_cfg = self.ds_cfg.train_datasets[dataset]
special_token = ds_cfg.special_token
encoder_type = ds_cfg.encoder_type
shuffle_positives = ds_cfg.shuffle_positives
# to be able to resume shuffled ctx- pools
data_iteration = train_data_iterator.get_iteration()
random.seed(seed + epoch + data_iteration)
biencoder_batch = BiEncoder.create_biencoder_input2(
samples_batch,
self.tensorizer,
True,
num_hard_negatives,
num_other_negatives,
shuffle=True,
shuffle_positives=shuffle_positives,
query_token=special_token,
)
# get the token to be used for representation selection
from dar.data.biencoder_data import DEFAULT_SELECTOR
selector = ds_cfg.selector if ds_cfg else DEFAULT_SELECTOR
rep_positions = selector.get_positions(
biencoder_batch.question_ids, self.tensorizer
)
loss_scale = (
cfg.loss_scale_factors[dataset] if cfg.loss_scale_factors else None
)
loss, correct_cnt = _do_biencoder_fwd_pass(
self.biencoder,
biencoder_batch,
self.tensorizer,
cfg,
encoder_type=encoder_type,
rep_positions=rep_positions,
loss_scale=loss_scale,
)
epoch_correct_predictions += correct_cnt
epoch_loss += loss.item()
rolling_train_loss += loss.item()
if cfg.fp16:
from apex import amp
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
if cfg.train.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(
amp.master_params(self.optimizer), cfg.train.max_grad_norm
)
else:
loss.backward()
if cfg.train.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(
self.biencoder.parameters(), cfg.train.max_grad_norm
)
if (i + 1) % cfg.train.gradient_accumulation_steps == 0:
self.optimizer.step()
scheduler.step()
self.biencoder.zero_grad()
if i % log_result_step == 0:
lr = self.optimizer.param_groups[0]["lr"]
logger.info(
"Epoch: %d: Step: %d/%d, loss=%f, lr=%f",
epoch,
data_iteration,
epoch_batches,
loss.item(),
lr,
)
if (i + 1) % rolling_loss_step == 0:
logger.info("Train batch %d", data_iteration)
latest_rolling_train_av_loss = rolling_train_loss / rolling_loss_step
logger.info(
"Avg. loss per last %d batches: %f",
rolling_loss_step,
latest_rolling_train_av_loss,
)
rolling_train_loss = 0.0
if data_iteration % eval_step == 0:
logger.info(
"rank=%d, Validation: Epoch: %d Step: %d/%d",
cfg.local_rank,
epoch,
data_iteration,
epoch_batches,
)
self.validate_and_save(
epoch, train_data_iterator.get_iteration(), scheduler
)
self.biencoder.train()
logger.info("Epoch finished on %d", cfg.local_rank)
self.validate_and_save(epoch, data_iteration, scheduler)
epoch_loss = (epoch_loss / epoch_batches) if epoch_batches > 0 else 0
logger.info("Av Loss per epoch=%f", epoch_loss)
logger.info("epoch total correct predictions=%d", epoch_correct_predictions)
def _save_checkpoint(self, scheduler, epoch: int, offset: int) -> str:
cfg = self.cfg
model_to_save = get_model_obj(self.biencoder)
cp = os.path.join(cfg.output_dir, cfg.checkpoint_file_name + "." + str(epoch))
meta_params = get_encoder_params_state_from_cfg(cfg)
state = CheckpointState(
model_to_save.get_state_dict(),
self.optimizer.state_dict(),
scheduler.state_dict(),
offset,
epoch,
meta_params,
)
torch.save(state._asdict(), cp)
logger.info("Saved checkpoint at %s", cp)
return cp
def _load_saved_state(self, saved_state: CheckpointState):
epoch = saved_state.epoch
# offset is currently ignored since all checkpoints are made after full epochs
offset = saved_state.offset
if offset == 0: # epoch has been completed
epoch += 1
logger.info("Loading checkpoint @ batch=%s and epoch=%s", offset, epoch)
if self.cfg.ignore_checkpoint_offset:
self.start_epoch = 0
self.start_batch = 0
else:
self.start_epoch = epoch
# TODO: offset doesn't work for multiset currently
self.start_batch = 0 # offset
model_to_load = get_model_obj(self.biencoder)
logger.info("Loading saved model state ...")
model_to_load.load_state(saved_state)
if not self.cfg.ignore_checkpoint_optimizer:
if saved_state.optimizer_dict:
logger.info("Loading saved optimizer state ...")
self.optimizer.load_state_dict(saved_state.optimizer_dict)
if saved_state.scheduler_dict:
self.scheduler_state = saved_state.scheduler_dict
def _calc_loss(
cfg,
loss_function,
local_q_vector,
local_ctx_vectors,
local_positive_idxs,
local_hard_negatives_idxs: list = None,
loss_scale: float = None,
) -> Tuple[T, bool]:
"""
Calculates In-batch negatives schema loss and supports to run it in DDP mode by exchanging the representations
across all the nodes.
"""
distributed_world_size = cfg.distributed_world_size or 1
if distributed_world_size > 1:
q_vector_to_send = (
torch.empty_like(local_q_vector).cpu().copy_(local_q_vector).detach_()
)
ctx_vector_to_send = (
torch.empty_like(local_ctx_vectors).cpu().copy_(local_ctx_vectors).detach_()
)
global_question_ctx_vectors = all_gather_list(
[
q_vector_to_send,
ctx_vector_to_send,
local_positive_idxs,
local_hard_negatives_idxs,
],
max_size=cfg.global_loss_buf_sz,
)
global_q_vector = []
global_ctxs_vector = []
# ctxs_per_question = local_ctx_vectors.size(0)
positive_idx_per_question = []
hard_negatives_per_question = []
total_ctxs = 0
for i, item in enumerate(global_question_ctx_vectors):
q_vector, ctx_vectors, positive_idx, hard_negatives_idxs = item
if i != cfg.local_rank:
global_q_vector.append(q_vector.to(local_q_vector.device))
global_ctxs_vector.append(ctx_vectors.to(local_q_vector.device))
positive_idx_per_question.extend([v + total_ctxs for v in positive_idx])
hard_negatives_per_question.extend(
[[v + total_ctxs for v in l] for l in hard_negatives_idxs]
)
else:
global_q_vector.append(local_q_vector)
global_ctxs_vector.append(local_ctx_vectors)
positive_idx_per_question.extend(
[v + total_ctxs for v in local_positive_idxs]
)
hard_negatives_per_question.extend(
[[v + total_ctxs for v in l] for l in local_hard_negatives_idxs]
)
total_ctxs += ctx_vectors.size(0)
global_q_vector = torch.cat(global_q_vector, dim=0)
global_ctxs_vector = torch.cat(global_ctxs_vector, dim=0)
else:
global_q_vector = local_q_vector
global_ctxs_vector = local_ctx_vectors
positive_idx_per_question = local_positive_idxs
hard_negatives_per_question = local_hard_negatives_idxs
loss, is_correct = loss_function.calc(
global_q_vector,
global_ctxs_vector,
positive_idx_per_question,
hard_negatives_per_question,
loss_scale=loss_scale,
)
return loss, is_correct
def _do_biencoder_fwd_pass(
model: nn.Module,
input: BiEncoderBatch,
tensorizer: Tensorizer,
cfg,
encoder_type: str,
rep_positions=0,
loss_scale: float = None,
) -> Tuple[torch.Tensor, int]:
input = BiEncoderBatch(**move_to_device(input._asdict(), cfg.device))
q_attn_mask = tensorizer.get_attn_mask(input.question_ids)
ctx_attn_mask = tensorizer.get_attn_mask(input.context_ids)
if model.training:
model_out = model(
input.question_ids,
input.question_segments,
q_attn_mask,
input.context_ids,
input.ctx_segments,
ctx_attn_mask,
encoder_type=encoder_type,
representation_token_pos=rep_positions,
)
else:
with torch.no_grad():
model_out = model(
input.question_ids,
input.question_segments,
q_attn_mask,
input.context_ids,
input.ctx_segments,
ctx_attn_mask,
encoder_type=encoder_type,
representation_token_pos=rep_positions,
)
local_q_vector, local_ctx_vectors = model_out
#(TODO) Loss function selection
loss_function_type = cfg.train.loss_function_type
if loss_function_type == 'nll':
loss_function = BiEncoderNllLoss()
elif loss_function_type == 'mixup_nll':
loss_function = BiEncoderMixupNllLoss()
#(TODO) Perturbation with dropout
dropout = cfg.train.dropout
if dropout == True:
lst_local_ctx_vectors = [local_ctx_vectors]
drop_layer = nn.Dropout(0.1)
for i in range(0,7):
dropout_local_ctx_vectors = drop_layer(local_ctx_vectors)
lst_local_ctx_vectors.append(dropout_local_ctx_vectors)
loss = 0
is_correct = 0
for idx, local_ctx_vectors in enumerate(lst_local_ctx_vectors):
l, is_c = _calc_loss(
cfg,
loss_function,
local_q_vector,
local_ctx_vectors,
input.is_positive,
input.hard_negatives,
loss_scale=loss_scale,
)
loss = l + loss
if idx == 0:
is_correct = is_c
loss = loss / len(lst_local_ctx_vectors)
else:
loss, is_correct = _calc_loss(
cfg,
loss_function,
local_q_vector,
local_ctx_vectors,
input.is_positive,
input.hard_negatives,
loss_scale=loss_scale,
)
is_correct = is_correct.sum().item()
if cfg.n_gpu > 1:
loss = loss.mean()
if cfg.train.gradient_accumulation_steps > 1:
loss = loss / cfg.gradient_accumulation_steps
return loss, is_correct
@hydra.main(config_path="conf", config_name="biencoder_train_cfg")
def main(cfg: DictConfig):
if cfg.train.gradient_accumulation_steps < 1:
raise ValueError(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
cfg.train.gradient_accumulation_steps
)
)
if cfg.output_dir is not None:
os.makedirs(cfg.output_dir, exist_ok=True)
cfg = setup_cfg_gpu(cfg)
set_seed(cfg)
if cfg.local_rank in [-1, 0]:
logger.info("CFG (after gpu configuration):")
logger.info("%s", OmegaConf.to_yaml(cfg))
trainer = BiEncoderTrainer(cfg)
if cfg.train_datasets and len(cfg.train_datasets) > 0:
trainer.run_train()
elif cfg.model_file and cfg.dev_datasets:
logger.info(
"No train files are specified. Run 2 types of validation for specified model file"
)
trainer.validate_nll()
trainer.validate_average_rank()
else:
logger.warning(
"Neither train_file or (model_file & dev_file) parameters are specified. Nothing to do."
)
if __name__ == "__main__":
logger.info("Sys.argv: %s", sys.argv)
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--") :])
else:
hydra_formatted_args.append(arg)
logger.info("Hydra formatted Sys.argv: %s", hydra_formatted_args)
sys.argv = hydra_formatted_args
main()