forked from PetarV-/GAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute_cora_sparse.py
201 lines (170 loc) · 7.28 KB
/
execute_cora_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import time
import scipy.sparse as sp
import numpy as np
import tensorflow as tf
import argparse
from models import GAT
from models import SpGAT
from utils import process
checkpt_file = 'pre_trained/cora/mod_cora.ckpt'
dataset = 'cora'
# training params
batch_size = 1
nb_epochs = 100000
patience = 100
lr = 0.005 # learning rate
l2_coef = 0.0005 # weight decay
hid_units = [8] # numbers of hidden units per each attention head in each layer
n_heads = [8, 1] # additional entry for the output layer
residual = False
nonlinearity = tf.nn.elu
# model = GAT
model = SpGAT
print('Dataset: ' + dataset)
print('----- Opt. hyperparams -----')
print('lr: ' + str(lr))
print('l2_coef: ' + str(l2_coef))
print('----- Archi. hyperparams -----')
print('nb. layers: ' + str(len(hid_units)))
print('nb. units per layer: ' + str(hid_units))
print('nb. attention heads: ' + str(n_heads))
print('residual: ' + str(residual))
print('nonlinearity: ' + str(nonlinearity))
print('model: ' + str(model))
sparse = True
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = process.load_data(dataset)
features, spars = process.preprocess_features(features)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
nb_classes = y_train.shape[1]
features = features[np.newaxis]
y_train = y_train[np.newaxis]
y_val = y_val[np.newaxis]
y_test = y_test[np.newaxis]
train_mask = train_mask[np.newaxis]
val_mask = val_mask[np.newaxis]
test_mask = test_mask[np.newaxis]
if sparse:
biases = process.preprocess_adj_bias(adj)
else:
adj = adj.todense()
adj = adj[np.newaxis]
biases = process.adj_to_bias(adj, [nb_nodes], nhood=1)
with tf.Graph().as_default():
with tf.name_scope('input'):
ftr_in = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_nodes, ft_size))
if sparse:
#bias_idx = tf.placeholder(tf.int64)
#bias_val = tf.placeholder(tf.float32)
#bias_shape = tf.placeholder(tf.int64)
bias_in = tf.sparse_placeholder(dtype=tf.float32)
else:
bias_in = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_nodes, nb_nodes))
lbl_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes, nb_classes))
msk_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes))
attn_drop = tf.placeholder(dtype=tf.float32, shape=())
ffd_drop = tf.placeholder(dtype=tf.float32, shape=())
is_train = tf.placeholder(dtype=tf.bool, shape=())
logits = model.inference(ftr_in, nb_classes, nb_nodes, is_train,
attn_drop, ffd_drop,
bias_mat=bias_in,
hid_units=hid_units, n_heads=n_heads,
residual=residual, activation=nonlinearity)
log_resh = tf.reshape(logits, [-1, nb_classes])
lab_resh = tf.reshape(lbl_in, [-1, nb_classes])
msk_resh = tf.reshape(msk_in, [-1])
loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh)
accuracy = model.masked_accuracy(log_resh, lab_resh, msk_resh)
train_op = model.training(loss, lr, l2_coef)
saver = tf.train.Saver()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
vlss_mn = np.inf
vacc_mx = 0.0
curr_step = 0
with tf.Session() as sess:
sess.run(init_op)
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
for epoch in range(nb_epochs):
tr_step = 0
tr_size = features.shape[0]
while tr_step * batch_size < tr_size:
if sparse:
bbias = biases
else:
bbias = biases[tr_step*batch_size:(tr_step+1)*batch_size]
_, loss_value_tr, acc_tr = sess.run([train_op, loss, accuracy],
feed_dict={
ftr_in: features[tr_step*batch_size:(tr_step+1)*batch_size],
bias_in: bbias,
lbl_in: y_train[tr_step*batch_size:(tr_step+1)*batch_size],
msk_in: train_mask[tr_step*batch_size:(tr_step+1)*batch_size],
is_train: True,
attn_drop: 0.6, ffd_drop: 0.6})
train_loss_avg += loss_value_tr
train_acc_avg += acc_tr
tr_step += 1
vl_step = 0
vl_size = features.shape[0]
while vl_step * batch_size < vl_size:
if sparse:
bbias = biases
else:
bbias = biases[vl_step*batch_size:(vl_step+1)*batch_size]
loss_value_vl, acc_vl = sess.run([loss, accuracy],
feed_dict={
ftr_in: features[vl_step*batch_size:(vl_step+1)*batch_size],
bias_in: bbias,
lbl_in: y_val[vl_step*batch_size:(vl_step+1)*batch_size],
msk_in: val_mask[vl_step*batch_size:(vl_step+1)*batch_size],
is_train: False,
attn_drop: 0.0, ffd_drop: 0.0})
val_loss_avg += loss_value_vl
val_acc_avg += acc_vl
vl_step += 1
print('Training: loss = %.5f, acc = %.5f | Val: loss = %.5f, acc = %.5f' %
(train_loss_avg/tr_step, train_acc_avg/tr_step,
val_loss_avg/vl_step, val_acc_avg/vl_step))
if val_acc_avg/vl_step >= vacc_mx or val_loss_avg/vl_step <= vlss_mn:
if val_acc_avg/vl_step >= vacc_mx and val_loss_avg/vl_step <= vlss_mn:
vacc_early_model = val_acc_avg/vl_step
vlss_early_model = val_loss_avg/vl_step
saver.save(sess, checkpt_file)
vacc_mx = np.max((val_acc_avg/vl_step, vacc_mx))
vlss_mn = np.min((val_loss_avg/vl_step, vlss_mn))
curr_step = 0
else:
curr_step += 1
if curr_step == patience:
print('Early stop! Min loss: ', vlss_mn, ', Max accuracy: ', vacc_mx)
print('Early stop model validation loss: ', vlss_early_model, ', accuracy: ', vacc_early_model)
break
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
saver.restore(sess, checkpt_file)
ts_size = features.shape[0]
ts_step = 0
ts_loss = 0.0
ts_acc = 0.0
while ts_step * batch_size < ts_size:
if sparse:
bbias = biases
else:
bbias = biases[ts_step*batch_size:(ts_step+1)*batch_size]
loss_value_ts, acc_ts = sess.run([loss, accuracy],
feed_dict={
ftr_in: features[ts_step*batch_size:(ts_step+1)*batch_size],
bias_in: bbias,
lbl_in: y_test[ts_step*batch_size:(ts_step+1)*batch_size],
msk_in: test_mask[ts_step*batch_size:(ts_step+1)*batch_size],
is_train: False,
attn_drop: 0.0, ffd_drop: 0.0})
ts_loss += loss_value_ts
ts_acc += acc_ts
ts_step += 1
print('Test loss:', ts_loss/ts_step, '; Test accuracy:', ts_acc/ts_step)
sess.close()