-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcjs_jags.R
125 lines (99 loc) · 2.82 KB
/
cjs_jags.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Fit Cormack-Jolly-Seber model to the Dipper data
# Bayesian approach
# see Gimenez et al. (2007), Royle (2008)
# Jags implementation
# Read in the data:
mydata <- read.table('dipper.txt')
head(mydata)
dim(mydata)
# remove counts
mydata <- mydata[,-8]
N <- dim(mydata)[1]
K <- dim(mydata)[2]
# Compute the date of first capture for each individual:
e <- NULL
for (i in 1:N){
temp <- 1:K
e <- c(e,min(temp[mydata[i,]>=1]))}
# Let's define the model. To do so, some notation first:
# OBSERVATIONS (+1)
# 0 = non-detected
# 1 = detected
# STATES
# 1 = alive
# 2 = dead
# PARAMETERS
# phi survival
# p detection
# Now the model:
model <- function() {
# DEFINE PARAMETERS
# probabilities for each INITIAL STATES
px0[1] <- 1 # prob. of being in initial state alive
px0[2] <- 0 # prob. of being in initial state dead
# OBSERVATION PROCESS: probabilities of observations (columns) at a given occasion given states (rows) at this occasion
# step 1: detection
po[1,1] <- 1 - p
po[1,2] <- p
po[2,1] <- 1
po[2,2] <- 0
po.init[1,1] <- 0
po.init[1,2] <- 1
po.init[2,1] <- 1
po.init[2,2] <- 0
# STATE PROCESS: probabilities of states at t+1 (columns) given states at t (rows)
# step 1: survival
px[1,1] <- phi
px[1,2] <- 1 - phi
px[2,1] <- 0
px[2,2] <- 1
for (i in 1:N) # for each indiv
{
# estimated probabilities of initial states are the proportions in each state at first capture occasion
alive[i,First[i]] ~ dcat(px0[1:2])
mydata[i,First[i]] ~ dcat(po.init[alive[i,First[i]],1:2])
for (j in (First[i]+1):Years) # loop over time
{
## STATE EQUATIONS ##
# draw states at j given states at j-1
alive[i,j] ~ dcat(px[alive[i,j-1],1:2])
## OBSERVATION EQUATIONS ##
# draw observations at j given states at j
mydata[i,j] ~ dcat(po[alive[i,j],1:2])
}
}
# PRIORS
phi ~ dunif(0, 1)
p ~ dunif(0, 1)
}
# Form the list of data
mydatax <- list(N=N,Years=K,mydata=as.matrix(mydata+1),First=e)
# Generate inits for the latent states
x.init <- mydata
for (i in 1:N){
if (e[i] == 1) next
if (e[i] > 1) x.init[i,1:(e[i]-1)] <- NA
}
x.init[x.init==0] <- 1
z <- as.matrix(x.init)
# Now form the list of initial values:
init1 <- list(p=0.1,phi=0.1,alive=z)
# second list of inits
init2 <- list(p=0.8,phi=0.8,alive=z)
# concatenate list of initial values
inits <- list(init1,init2)
# Specify the parameters to be monitored
parameters <- c("phi","p")
# Tadaaaaaaan, fit the model:
library(R2jags)
out <- jags(mydatax,inits,parameters, model,n.chains=2,n.iter=2000,n.burnin=500)
# Check convergence:
traceplot(out,ask=T)
# Nice plots:
library(lattice)
jagsfit.mcmc <- as.mcmc(out)
densityplot(jagsfit.mcmc)
# Print results
print(out)
# These results might be compared to the results obtained using E-SURGE
# 0.560243, 0.9025836