-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuncertainty_jags.R
207 lines (179 loc) · 5.38 KB
/
uncertainty_jags.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Fit multistate model with uncertainty in the state assignement to Sooty shearwater data (titis)
# Bayesian approach
# see Gimenez et al. (2012), Pradel (2005)
# Read in the data:
mydata <- read.table('titis2.txt')
head(mydata)
dim(mydata)
N <- dim(mydata)[1]
K <- dim(mydata)[2]
# Compute the date of first capture for each individual:
e <- NULL
for (i in 1:N){
temp <- 1:K
e <- c(e,min(temp[mydata[i,]>=1]))}
# Let's define the model. To do so, some notation first:
# OBSERVATIONS (+1)
# 0 = non-detected
# 1 = seen and ascertained as non-breeder
# 2 = seen and ascertained as breeder
# 3 = not ascertained
# STATES
# 1 = alive non-breeder
# 2 = alive breeder
# 3 = dead
# PARAMETERS
# phiNB survival prob. of non-breeders
# phiB survival prob. of breeders
# pNB detection prob. of non-breeders
# pB detection prob. of breeders
# psiNBB transition prob. from non-breeder to breeder
# psiBNB transition prob. from breeder to non-breeder
# piNB prob. of being in initial state non-breeder
# deltaNB prob to ascertain the breeding status of an individual encountered as non-breeder
# deltaB prob to ascertain the breeding status of an individual encountered as breeder
# Now the model:
M <- function() {
# DEFINE PARAMETERS
# probabilities for each INITIAL STATES
px0[1] <- piNB # prob. of being in initial state NB
px0[2] <- 1 - piNB # prob. of being in initial state B
px0[3] <- 0 # prob. of being in initial state dead
# OBSERVATION PROCESS: probabilities of observations (columns) at a given occasion given states (rows) at this occasion
# step 1: detection
po1[1,1] <- 1 - pNB
po1[1,2] <- pNB
po1[1,3] <- 0
po1[2,1] <- 1 - pB
po1[2,2] <- 0
po1[2,3] <- pB
po1[3,1] <- 1
po1[3,2] <- 0
po1[3,3] <- 0
po1.init[1,1] <- 0
po1.init[1,2] <- 1
po1.init[1,3] <- 0
po1.init[2,1] <- 0
po1.init[2,2] <- 0
po1.init[2,3] <- 1
po1.init[3,1] <- 1
po1.init[3,2] <- 0
po1.init[3,3] <- 0
# step 2: assignement
po2[1,1] <- 1
po2[1,2] <- 0
po2[1,3] <- 0
po2[1,4] <- 0
po2[2,1] <- 0
po2[2,2] <- deltaNB
po2[2,3] <- 0
po2[2,4] <- 1 - deltaNB
po2[3,1] <- 0
po2[3,2] <- 0
po2[3,3] <- deltaB
po2[3,4] <- 1 - deltaB
# form the matrix product
po <- po1 %*% po2
po.init <- po1.init %*% po2
# STATE PROCESS: probabilities of states at t+1 (columns) given states at t (rows)
# step 1: survival
px1[1,1] <- phiNB
px1[1,2] <- 0
px1[1,3] <- 1 - phiNB
px1[2,1] <- 0
px1[2,2] <- phiB
px1[2,3] <- 1 - phiB
px1[3,1] <- 0
px1[3,2] <- 0
px1[3,3] <- 1
# step 2: transition
px2[1,1] <- 1 - psiNBB
px2[1,2] <- psiNBB
px2[1,3] <- 0
px2[2,1] <- psiBNB
px2[2,2] <- 1 - psiBNB
px2[2,3] <- 0
px2[3,1] <- 0
px2[3,2] <- 0
px2[3,3] <- 1
# form the matrix product
px <- px1 %*% px2
for (i in 1:N) # for each ind
{
# estimated probabilities of initial states are the proportions in each state at first capture occasion
alive[i,First[i]] ~ dcat(px0[1:3])
mydata[i,First[i]] ~ dcat(po.init[alive[i,First[i]],1:4])
for (j in (First[i]+1):Years) # loop over time
{
## STATE EQUATIONS ##
# draw states at j given states at j-1
alive[i,j] ~ dcat(px[alive[i,j-1],1:3])
## OBSERVATION EQUATIONS ##
# draw observations at j given states at j
mydata[i,j] ~ dcat(po[alive[i,j],1:4])
}
}
# PRIORS
phiNB ~ dunif(0, 1)
phiB ~ dunif(0, 1)
pNB ~ dunif(0, 1)
pB ~ dunif(0, 1)
psiNBB ~ dunif(0, 1)
psiBNB ~ dunif(0, 1)
piNB ~ dunif(0, 1)
deltaNB ~ dunif(0, 1)
deltaB ~ dunif(0, 1)
}
# Form the list of data
mydatax <- list(N=N,Years=K,mydata=as.matrix(mydata+1),First=e)
# Generate inits for the latent states:
alive <- mydata
# assign 2s to 3s
alive [alive==3] <- 2
for (i in 1:N) {
for (j in 1:K) {
if (j > e[i] & mydata[i,j]==0) {alive[i,j] <- which(rmultinom(1, 1, c(1/2,1/2))==1)}
if (j < e[i]) {alive[i,j] <- NA}
}
}
alive1 <- as.matrix(alive)
alive <- mydata
# assign 1s to 3s
alive [alive==3] <- 1
for (i in 1:N) {
for (j in 1:K) {
if (j > e[i] & mydata[i,j]==0) {alive[i,j] <- which(rmultinom(1, 1, c(1/2,1/2))==1)}
if (j < e[i]) {alive[i,j] <- NA}
}
}
alive2 <- as.matrix(alive)
# Now form the list of initial values:
init1 <- list(pB=0.5,phiNB=0.3,alive=alive1)
# second list of inits
init2 <- list(pB=0.5,phiNB=0.6,alive=alive2)
# concatenate list of initial values
inits <- list(init1,init2)
# Specify the parameters to be monitored
parameters <- c("phiB","phiNB","psiNBB","psiBNB","piNB","pB","pNB","deltaNB","deltaB")
# Tadaaaaaaan, fit the model:
library(R2jags)
out <- jags(mydatax,inits,parameters, M,n.chains=2,n.iter=2000,n.burnin=500)
# Check convergence:
traceplot(out,ask=F)
# Nice plots:
library(lattice)
jagsfit.mcmc <- as.mcmc(out)
densityplot(jagsfit.mcmc)
# Print results
print(out)
# These results are to be compared to the results obtained using E-SURGE
# (Table 1 in Gimenez et al. 2012):
# deltaB | 0.737576452 0.616347581 0.831002071 0.055236538
# deltaNB | 0.187797018 0.162175744 0.216420470 0.013831853
# pB | 0.597718828 0.532890645 0.659302061 0.032413822
# pNB | 0.564643587 0.508403711 0.619267746 0.028396321
# phiB | 0.837489708 0.796415345 0.871612997 0.019139418
# phiNB | 0.814037056 0.779702384 0.844090508 0.016414429
# piNB | 0.704217686 0.646248176 0.756270393 0.028149150
# psiBNB | 0.226471935 0.144866984 0.335984429 0.048899140
# psiNBB | 0.219402142 0.173907703 0.272866821 0.025255272