-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathall_features_MEM.R
118 lines (90 loc) · 4.07 KB
/
all_features_MEM.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
##-------------------------------------------------------------------------------
## all_features_MEM: generate mixed-effects models for all EEG features.
## writes fixed-effects coefficients and formulats to .csv files
##
## Syntax: all_features_MEM()
##
## Inputs:
## none
##
## Outputs:
## none
##
## REQUIRES:
## lme4 (version 1.1.15)
##
## and local functions:
## mixedmodel_each_feature.R
## utils/loglikelihood.ratio.test.MEM.R
## utils/mem.coeffs.display.R
## utils/extract.coeffs.table.R
##
##
## John M. O' Toole, University College Cork
## Started: 23-02-2018
##
## last update: Time-stamp: <2019-01-10 16:19:57 (otoolej)>
##-------------------------------------------------------------------------------
all_features_MEM <- function(){
##-------------------------------------------------------------------
## 1. set directories
##-------------------------------------------------------------------
data_dir <- './data/'
utils_dir <- './utils/'
fin_feat_set <- paste(data_dir, 'subset_features_v3.csv', sep='')
fout_fixed_effects <- paste(data_dir, 'coeffs_fixedEffects_MM_v1.csv', sep='')
fout_mm_formulas <- paste(data_dir, 'formulas_MM_v1.csv', sep='')
## set verbose level (0 or 1):
DBverbose <- 1
##-------------------------------------------------------------------
## 2. load libraries and local functions
##-------------------------------------------------------------------
source(paste(utils_dir, 'loglikelihood.ratio.test.MEM.R', sep=""))
source(paste(utils_dir, 'mem.coeffs.display.R', sep=""))
source(paste(utils_dir, 'extract.coeffs.table.R', sep=""))
source('mixedmodel_each_feature.R')
library(lme4)
##-------------------------------------------------------------------
## 3. load feature set
##-------------------------------------------------------------------
dfFeats <- read.csv(file = fin_feat_set, sep = ",")
## use precise timing of EEG epochs and convert to days:
dfFeats$time <- dfFeats$EEG_PNA / 24
featNames <- colnames(dfFeats)
featNames <- featNames[! featNames %in% c("c_code", "GA", "baby_ID", "time", "EEG_PNA")]
N_feats <- length(featNames)
##-------------------------------------------------------------------
## 4. mixed-effect model for all features
##-------------------------------------------------------------------
all_coeffs_forms <- vector("list", N_feats)
all_forms <- vector("list", N_feats)
## write fixed-effects coefficients to .csv file:
cat(paste("# feature, intercept, Ici1, Ici2, time, Tci1, Tci2, ",
"GA, Gci1, Gci2, time:GA, TGci1, TGci2 ",
sep=""), file=fout_fixed_effects, append=FALSE, sep = "\n")
## iterate over all features:
for(nn in 1:N_feats){
## a) make subset data frame:
aa <- names(dfFeats) %in% featNames
dfFeats.sub <- dfFeats[!aa]
featureName <- featNames[nn];
dfFeats.sub$feat <- dfFeats[[featNames[nn]]]
dfFeats.sub <- droplevels(dfFeats.sub)
## b) fit the mixed-effect model:
cat(sprintf('\n\n** FEAT: %s -----\n', featureName))
coeff_form_lt <- mixedmodel_each_feature(dfFeats.sub, featureName, DBverbose)
## c) write the fixed-effect coefficients (and formulas) to .csv file:
csv_line <- extract.coeffs.table(coeff_form_lt$coeffs, coeff_form_lt$feature)
cat(csv_line, file=fout_fixed_effects, append=TRUE, sep = "\n")
all_coeffs_forms[[nn]] <- coeff_form_lt
coeff_form_lt[['coeffs']] <- NULL
all_forms[[nn]] <- coeff_form_lt
}
##-------------------------------------------------------------------
## 5. write formulas to output file and in terminal
##-------------------------------------------------------------------
fcon <- file(fout_mm_formulas)
writeLines(unlist(lapply(all_forms, paste, collapse=" , ")), con=fcon)
close(fcon)
writeLines(unlist(lapply(all_forms, paste, collapse=" || ")), con=stdout())
}