-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpdf_qa.py
204 lines (191 loc) · 8.96 KB
/
pdf_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from langchain.document_loaders import PDFPlumberLoader
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
from transformers import pipeline
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from constants import *
from transformers import AutoTokenizer
import torch
import os
import re
class PdfQA:
def __init__(self,config:dict = {}):
self.config = config
self.embedding = None
self.vectordb = None
self.llm = None
self.qa = None
self.retriever = None
# The following class methods are useful to create global GPU model instances
# This way we don't need to reload models in an interactive app,
# and the same model instance can be used across multiple user sessions
@classmethod
def create_instructor_xl(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceInstructEmbeddings(model_name=EMB_INSTRUCTOR_XL, model_kwargs={"device": device})
@classmethod
def create_sbert_mpnet(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
@classmethod
def create_flan_t5_xxl(cls, load_in_8bit=False):
# Local flan-t5-xxl with 8-bit quantization for inference
# Wrap it in HF pipeline for use with LangChain
return pipeline(
task="text2text-generation",
model="google/flan-t5-xxl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model="google/flan-t5-xl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_small(cls, load_in_8bit=False):
# Local flan-t5-small for inference
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_base(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_large(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_fastchat_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model = "lmsys/fastchat-t5-3b-v1.0",
max_new_tokens=100,
# model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
def init_embeddings(self) -> None:
# OpenAI ada embeddings API
if self.config["embedding"] == EMB_INSTRUCTOR_XL:
# Local INSTRUCTOR-XL embeddings
if self.embedding is None:
self.embedding = PdfQA.create_instructor_xl()
elif self.config["embedding"] == EMB_SBERT_MPNET_BASE:
## this is for SBERT
if self.embedding is None:
self.embedding = PdfQA.create_sbert_mpnet()
else:
self.embedding = None ## DuckDb uses sbert embeddings
# raise ValueError("Invalid config")
def init_models(self) -> None:
""" Initialize LLM models based on config """
load_in_8bit = self.config.get("load_in_8bit",False)
if self.config["llm"] == LLM_FLAN_T5_SMALL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_small(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_BASE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_base(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_LARGE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_large(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XXL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xxl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FASTCHAT_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_fastchat_t5_xl(load_in_8bit=load_in_8bit)
else:
raise ValueError("Invalid config")
def vector_db_pdf(self) -> None:
"""
creates vector db for the embeddings and persists them or loads a vector db from the persist directory
"""
pdf_path = self.config.get("pdf_path",None)
persist_directory = self.config.get("persist_directory",None)
if persist_directory and os.path.exists(persist_directory):
## Load from the persist db
self.vectordb = Chroma(persist_directory=persist_directory, embedding_function=self.embedding)
elif pdf_path and os.path.exists(pdf_path):
## 1. Extract the documents
loader = PDFPlumberLoader(pdf_path)
documents = loader.load()
## 2. Split the texts
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10, encoding_name="cl100k_base") # This the encoding for text-embedding-ada-002
text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10) # This the encoding for text-embedding-ada-002
texts = text_splitter.split_documents(texts)
## 3. Create Embeddings and add to chroma store
##TODO: Validate if self.embedding is not None
self.vectordb = Chroma.from_documents(documents=texts, embedding=self.embedding, persist_directory=persist_directory)
else:
raise ValueError("NO PDF found")
def retreival_qa_chain(self):
"""
Creates retrieval qa chain using vectordb as retrivar and LLM to complete the prompt
"""
##TODO: Use custom prompt
self.retriever = self.vectordb.as_retriever(search_kwargs={"k":3})
hf_llm = HuggingFacePipeline(pipeline=self.llm,model_id=self.config["llm"])
self.qa = RetrievalQA.from_chain_type(llm=hf_llm, chain_type="stuff",retriever=self.retriever)
if self.config["llm"] == LLM_FLAN_T5_SMALL or self.config["llm"] == LLM_FLAN_T5_BASE or self.config["llm"] == LLM_FLAN_T5_LARGE:
question_t5_template = """
context: {context}
question: {question}
answer:
"""
QUESTION_T5_PROMPT = PromptTemplate(
template=question_t5_template, input_variables=["context", "question"]
)
self.qa.combine_documents_chain.llm_chain.prompt = QUESTION_T5_PROMPT
self.qa.combine_documents_chain.verbose = True
self.qa.return_source_documents = True
def answer_query(self,question:str) ->str:
"""
Answer the question
"""
answer_dict = self.qa({"query":question,})
print(answer_dict)
answer = answer_dict["result"]
if self.config["llm"] == LLM_FASTCHAT_T5_XL:
answer = self._clean_fastchat_t5_output(answer)
return answer
def _clean_fastchat_t5_output(self, answer: str) -> str:
# Remove <pad> tags, double spaces, trailing newline
answer = re.sub(r"<pad>\s+", "", answer)
answer = re.sub(r" ", " ", answer)
answer = re.sub(r"\n$", "", answer)
return answer