Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in RunBanksy code #41

Open
salasd opened this issue Oct 9, 2024 · 0 comments
Open

Error in RunBanksy code #41

salasd opened this issue Oct 9, 2024 · 0 comments

Comments

@salasd
Copy link

salasd commented Oct 9, 2024

Hi, I am running through the Seurat tutorial Pipeline and having trouble with just the first part of the Banksy code and getting the following error while using the training data suggested:

> object <- RunBanksy(object,
+                     lambda = 0.5, verbose = TRUE,
+                     assay = "Spatial.008um", slot = "data", features = "variable",
+                     k_geom = 20
+ )

Fetching data from slot data from assay Spatial.008um
Subsetting by features
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Error in order(hvf.info$vst.variance.standardized, decreasing = TRUE) :
argument 1 is not a vector
In addition: Warning messages:
1: In get_data(object, assay, slot, features, verbose) :
No variable features found. Running Seurat::FindVariableFeatures
2: In FindVariableFeatures.Assay(object = object[[assay]], selection.method = selection.method, :
selection.method set to 'vst' but count slot is empty; will use data slot instead

The rest of the code runs okay until I get to the SpatialDimPlot() portion

DefaultAssay(object) <- "BANKSY"
object <- RunPCA(object, assay = "BANKSY", reduction.name = "pca.banksy", features = rownames(object), npcs = 30)
object <- FindNeighbors(object, reduction = "pca.banksy", dims = 1:30)
object <- FindClusters(object, cluster.name = "banksy_cluster", resolution = 0.5)

Idents(object) <- "banksy_cluster"
B <- SpatialDimPlot(object, group.by = "banksy_cluster", label = T, repel = T, label.size = 4)

Scale for fill is already present.
Adding another scale for fill, which will replace the existing scale.
Error in order(labels.loc[, id]) : argument 1 is not a vector

Here is my sessionInfo()
sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8 LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Banksy_1.0.0 SeuratWrappers_0.3.5 presto_1.0.0 data.table_1.16.0 Rcpp_1.0.13
[6] dplyr_1.1.4 patchwork_1.3.0 ggplot2_3.5.1 Seurat_5.1.0 SeuratObject_5.0.2
[11] sp_2.1-4

loaded via a namespace (and not attached):
[1] RcppHungarian_0.3 RcppAnnoy_0.0.22 splines_4.4.1 later_1.3.2
[5] tibble_3.2.1 R.oo_1.26.0 polyclip_1.10-7 fastDummies_1.7.4
[9] lifecycle_1.0.4 aricode_1.0.3 globals_0.16.3 processx_3.8.4
[13] lattice_0.22-6 hdf5r_1.3.11 MASS_7.3-60.2 magrittr_2.0.3
[17] plotly_4.10.4 remotes_2.5.0 httpuv_1.6.15 sctransform_0.4.1
[21] spam_2.11-0 sessioninfo_1.2.2 pkgbuild_1.4.4 spatstat.sparse_3.1-0
[25] reticulate_1.39.0 cowplot_1.1.3 pbapply_1.7-2 RColorBrewer_1.1-3
[29] zlibbioc_1.50.0 abind_1.4-8 pkgload_1.4.0 GenomicRanges_1.56.1
[33] Rtsne_0.17 purrr_1.0.2 R.utils_2.12.3 BiocGenerics_0.50.0
[37] GenomeInfoDbData_1.2.12 IRanges_2.38.1 S4Vectors_0.42.1 ggrepel_0.9.6
[41] irlba_2.3.5.1 listenv_0.9.1 spatstat.utils_3.1-0 goftest_1.2-3
[45] RSpectra_0.16-2 spatstat.random_3.3-2 fitdistrplus_1.2-1 parallelly_1.38.0
[49] DelayedArray_0.30.1 leiden_0.4.3.1 codetools_0.2-20 tidyselect_1.2.1
[53] UCSC.utils_1.0.0 farver_2.1.2 matrixStats_1.4.1 stats4_4.4.1
[57] spatstat.explore_3.3-2 jsonlite_1.8.9 ellipsis_0.3.2 progressr_0.14.0
[61] ggridges_0.5.6 survival_3.6-4 dbscan_1.2-0 tools_4.4.1
[65] ica_1.0-3 glue_1.8.0 SparseArray_1.4.8 gridExtra_2.3
[69] MatrixGenerics_1.16.0 usethis_3.0.0 GenomeInfoDb_1.40.1 withr_3.0.1
[73] BiocManager_1.30.25 fastmap_1.2.0 fansi_1.0.6 callr_3.7.6
[77] digest_0.6.37 rsvd_1.0.5 R6_2.5.1 mime_0.12
[81] colorspace_2.1-1 scattermore_1.2 sccore_1.0.5 tensor_1.5
[85] spatstat.data_3.1-2 R.methodsS3_1.8.2 utf8_1.2.4 tidyr_1.3.1
[89] generics_0.1.3 S4Arrays_1.4.1 httr_1.4.7 htmlwidgets_1.6.4
[93] uwot_0.2.2 pkgconfig_2.0.3 gtable_0.3.5 lmtest_0.9-40
[97] XVector_0.44.0 SingleCellExperiment_1.26.0 htmltools_0.5.8.1 profvis_0.4.0
[101] dotCall64_1.2 Biobase_2.64.0 scales_1.3.0 png_0.1-8
[105] SpatialExperiment_1.14.0 spatstat.univar_3.0-1 rstudioapi_0.16.0 rjson_0.2.23
[109] reshape2_1.4.4 nlme_3.1-164 curl_5.2.3 cachem_1.1.0
[113] zoo_1.8-12 stringr_1.5.1 KernSmooth_2.23-24 parallel_4.4.1
[117] miniUI_0.1.1.1 arrow_17.0.0.1 desc_1.4.3 pillar_1.9.0
[121] grid_4.4.1 vctrs_0.6.5 RANN_2.6.2 urlchecker_1.0.1
[125] promises_1.3.0 xtable_1.8-4 cluster_2.1.6 magick_2.8.5
[129] cli_3.6.3 compiler_4.4.1 crayon_1.5.3 rlang_1.1.4
[133] future.apply_1.11.2 labeling_0.4.3 mclust_6.1.1 ps_1.8.0
[137] plyr_1.8.9 fs_1.6.4 stringi_1.8.4 viridisLite_0.4.2
[141] deldir_2.0-4 assertthat_0.2.1 munsell_0.5.1 lazyeval_0.2.2
[145] devtools_2.4.5 spatstat.geom_3.3-3 Matrix_1.7-0 RcppHNSW_0.6.0
[149] bit64_4.5.2 future_1.34.0 shiny_1.9.1 SummarizedExperiment_1.34.0
[153] ROCR_1.0-11 leidenAlg_1.1.3 igraph_2.0.3 memoise_2.0.1
[157] bit_4.5.0 ape_5.8

I ran it a second time and got the following

> object <- RunBanksy(object,
+                     lambda = 0.5, verbose = TRUE,
+                     assay = "Spatial.008um", slot = "data", features = "variable",
+                     k_geom = 20
+ )

Fetching data from slot data from assay Spatial.008um
Subsetting by features
Computing neighbors...
Spatial mode is kNN_median
Parameters: k_geom=20
Done
Computing harmonic m = 0
Using 20 neighbors
Processed 393543 groups out of 393543. 100% done. Time elapsed: 399s. ETA: 0s..
Done
Creating Banksy matrix
Scaling BANKSY matrix. Do not call ScaleData on assay BANKSY
Setting default assay to BANKSY
Warning: Layer counts isn't present in the assay object; returning NULL
Warning message:
In asMethod(object) :
sparse->dense coercion: allocating vector of size 5.9 GiB

DefaultAssay(object) <- "BANKSY"
 object <- RunPCA(object, assay = "BANKSY", reduction.name = "pca.banksy", features = rownames(object), npcs = 30)

PC_ 1
Positive: Ptk2b.m0, Calm3.m0, Dnm1.m0, Gria2.m0, Chn1.m0, Rtn1.m0, Gpm6a.m0, Ppp3r1.m0, Calm2.m0, Olfm1.m0
Atp6v1b2.m0, Nrgn.m0, Snap25.m0, Serinc1.m0, Ppp3ca.m0, Ptprn.m0, Atp6v1a.m0, Syp.m0, Ywhah.m0, Stxbp1.m0
Ncdn.m0, Enc1.m0, Syt1.m0, Cadm3.m0, Atp1b1.m0, Mapk1.m0, Slc17a7.m0, Nell2.m0, Cadm2.m0, Phyhip.m0
Negative: Mbp.m0, Mobp.m0, Plp1.m0, Trf.m0, Apod.m0, Mal.m0, Cldn11.m0, Gatm.m0, Cnp.m0, Mag.m0
Ugt8a.m0, Mbp, Cryab.m0, Gfap.m0, Ermn.m0, Apoe.m0, Car2.m0, Ptgds.m0, Tspan2.m0, Plp1
Mog.m0, Mobp, Ppp1r14a.m0, Gjc3.m0, Pllp.m0, Ndrg1.m0, Ttyh2.m0, Fa2h.m0, Myrf.m0, Tmem88b.m0
PC_ 2
Positive: Slc17a7.m0, Camk2n1.m0, Nrgn.m0, Olfm1.m0, Cnksr2.m0, Ptk2b.m0, Vxn.m0, Zbtb18.m0, Cck.m0, Inka2.m0
Hpca.m0, Cabp1.m0, Rasgrp1.m0, Arc.m0, Kalrn.m0, Egr3.m0, Chn1.m0, Mef2c.m0, Itpka.m0, Mical2.m0
Tbr1.m0, Camk2n1, Neurod2.m0, Neurod6.m0, Tmem178.m0, Stx1a.m0, Lingo1.m0, Kctd1.m0, Camk4.m0, Satb2.m0
Negative: Baiap3.m0, Nap1l5.m0, Gaa.m0, Hap1.m0, Resp18.m0, Ndn.m0, Tmem130.m0, Peg3.m0, Ahi1.m0, Gpx3.m0
Zcchc12.m0, Nrsn2.m0, Gprasp2.m0, Sparc.m0, Scg2.m0, AW551984.m0, Wdr6.m0, Impact.m0, Vat1l.m0, Gprasp1.m0
Grb10.m0, Nnat.m0, Vat1.m0, Podxl2.m0, Pnck.m0, Maged1.m0, Calb2.m0, Ecel1.m0, Ache.m0, Gap43.m0
PC_ 3
Positive: Prkcd.m0, Pcp4.m0, Rora.m0, Slc17a6.m0, Tnnt1.m0, Amotl1.m0, Ccdc136.m0, Synpo2.m0, Ntng1.m0, Uchl1.m0
Tcf7l2.m0, Shox2.m0, Rab37.m0, Nefh.m0, Pdp1.m0, Cplx1.m0, Ramp3.m0, Kcnc2.m0, Vamp1.m0, Plekhg1.m0
Plcb4.m0, Grm1.m0, Rims3.m0, Ptpn3.m0, Nrip3.m0, Rgs16.m0, Spock3.m0, Atp2a2.m0, Grm4.m0, Rab3c.m0
Negative: Igf2.m0, Ahnak.m0, Ptgds.m0, Vim.m0, Mgp.m0, Fn1.m0, Col1a2.m0, Rbp1.m0, Cald1.m0, Dcn.m0
Igfbp2.m0, Nbl1.m0, Pcolce.m0, Bgn.m0, Cfh.m0, Aldh1a2.m0, Aebp1.m0, Islr.m0, Bmp6.m0, Slc13a4.m0
Slc6a20a.m0, Col1a1.m0, Anxa2.m0, Ifitm2.m0, Igfbp7.m0, Apod.m0, Vtn.m0, Cavin1.m0, Bmp7.m0, Slc6a13.m0
PC_ 4
Positive: Hap1.m0, Ly6h.m0, Ahi1.m0, Baiap3.m0, Atp2b4.m0, Ndn.m0, AW551984.m0, Pnmal2.m0, Ecel1.m0, Gpx3.m0
Pnck.m0, Ptpro.m0, Tmem130.m0, Fxyd6.m0, Gda.m0, Gad2.m0, Zcchc12.m0, Gaa.m0, Wdr6.m0, Vat1l.m0
Ngb.m0, Gap43.m0, Peg10.m0, Ctxn1.m0, Efnb3.m0, Penk.m0, Hap1, Rasal1.m0, Rcn1.m0, Resp18.m0
Negative: Prkcd.m0, Rora.m0, Tnnt1.m0, Synpo2.m0, Ptpn3.m0, Plekhg1.m0, Pdp1.m0, Pcp4.m0, Atp2a2.m0, Rgs16.m0
Rab37.m0, Plcb4.m0, Amotl1.m0, Ccdc136.m0, Shox2.m0, Ramp3.m0, Ntng1.m0, Zic1.m0, Cplx1.m0, Tcf7l2.m0
Nefh.m0, Kcnc2.m0, Rgs4.m0, Prkcd, Grm1.m0, Ildr2.m0, Patj.m0, Nrip3.m0, Rasd1.m0, Pcp4l1.m0
PC_ 5
Positive: Plp1.m0, Cldn11.m0, Mal.m0, Trf.m0, Mobp.m0, Mbp.m0, Mag.m0, Ugt8a.m0, Cnp.m0, Sgk1.m0
Efnb3.m0, Tspan2.m0, Gatm.m0, Car2.m0, Ermn.m0, Mog.m0, Cryab.m0, Sept4.m0, Plp1, Phldb1.m0
Zbtb20.m0, Slc44a1.m0, Ddr1.m0, Pllp.m0, Myrf.m0, Fa2h.m0, Prox1.m0, Gjc3.m0, Ppp1r14a.m0, Ttyh2.m0
Negative: Camk2n1.m0, Mef2c.m0, Stx1a.m0, Ngef.m0, Camk2n1, Igfbp6.m0, Cabp1.m0, Lamp5.m0, Car10.m0, Arpp21.m0
Cacnb3.m0, Snap25.m0, Ddit4l.m0, Atp2b4.m0, Stxbp1.m0, Ttc9b.m0, Lingo1.m0, Tbr1.m0, Satb2.m0, Slc1a3.m0
Camk4.m0, Pdzrn3.m0, Vsnl1.m0, Dkkl1.m0, Slc39a10.m0, Nptxr.m0, Cxcl14.m0, Gpr26.m0, Plxnd1.m0, Kcnh5.m0
Warning message:
Key 'PC_' taken, using 'pcabanksy_' instead

>object <- FindNeighbors(object, reduction = "pca.banksy", dims = 1:30)
Computing nearest neighbor graph
Computing SNN
> object <- FindClusters(object, cluster.name = "banksy_cluster", resolution = 0.5)

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 393543
Number of edges: 10655699

Running Louvain algorithm...
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.9306
Number of communities: 22
Elapsed time: 184 seconds

> Idents(object) <- "banksy_cluster"
> B <- SpatialDimPlot(object, group.by = "banksy_cluster", label = T, repel = T, label.size = 4)

Scale for fill is already present.
Adding another scale for fill, which will replace the existing scale.
Error in order(labels.loc[, id]) : argument 1 is not a vector

 sessionInfo()

R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8 LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Banksy_1.0.0 SeuratWrappers_0.3.5 BPCells_0.2.0 SeuratDisk_0.0.0.9021 arrow_17.0.0.1
[6] hdf5r_1.3.11 presto_1.0.0 data.table_1.16.0 Rcpp_1.0.13 dplyr_1.1.4
[11] patchwork_1.3.0 ggplot2_3.5.1 Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4
[16] Azimuth_0.5.0 shinyBS_0.61.1

loaded via a namespace (and not attached):
[1] fs_1.6.4 ProtGenerics_1.36.0 matrixStats_1.4.1
[4] spatstat.sparse_3.1-0 bitops_1.0-9 DirichletMultinomial_1.46.0
[7] TFBSTools_1.42.0 httr_1.4.7 RColorBrewer_1.1-3
[10] tools_4.4.1 sctransform_0.4.1 utf8_1.2.4
[13] R6_2.5.1 DT_0.33 lazyeval_0.2.2
[16] uwot_0.2.2 rhdf5filters_1.16.0 withr_3.0.1
[19] gridExtra_2.3 progressr_0.14.0 cli_3.6.3
[22] Biobase_2.64.0 spatstat.explore_3.3-2 fastDummies_1.7.4
[25] EnsDb.Hsapiens.v86_2.99.0 shinyjs_2.1.0 labeling_0.4.3
[28] spatstat.data_3.1-2 readr_2.1.5 ggridges_0.5.6
[31] pbapply_1.7-2 Rsamtools_2.20.0 dbscan_1.2-0
[34] R.utils_2.12.3 aricode_1.0.3 parallelly_1.38.0
[37] BSgenome_1.72.0 rstudioapi_0.16.0 RSQLite_2.3.7
[40] generics_0.1.3 BiocIO_1.14.0 gtools_3.9.5
[43] ica_1.0-3 spatstat.random_3.3-2 googlesheets4_1.1.1
[46] GO.db_3.19.1 Matrix_1.7-0 fansi_1.0.6
[49] S4Vectors_0.42.1 abind_1.4-8 R.methodsS3_1.8.2
[52] lifecycle_1.0.4 yaml_2.3.10 SummarizedExperiment_1.34.0
[55] rhdf5_2.48.0 SparseArray_1.4.8 Rtsne_0.17
[58] grid_4.4.1 blob_1.2.4 promises_1.3.0
[61] shinydashboard_0.7.2 crayon_1.5.3 pwalign_1.0.0
[64] miniUI_0.1.1.1 lattice_0.22-6 cowplot_1.1.3
[67] GenomicFeatures_1.56.0 annotate_1.82.0 KEGGREST_1.44.1
[70] magick_2.8.5 pillar_1.9.0 GenomicRanges_1.56.1
[73] rjson_0.2.23 future.apply_1.11.2 codetools_0.2-20
[76] fastmatch_1.1-4 leiden_0.4.3.1 glue_1.8.0
[79] spatstat.univar_3.0-1 remotes_2.5.0 vctrs_0.6.5
[82] png_0.1-8 spam_2.11-0 cellranger_1.1.0
[85] gtable_0.3.5 poweRlaw_0.80.0 assertthat_0.2.1
[88] cachem_1.1.0 Signac_1.14.0 S4Arrays_1.4.1
[91] mime_0.12 pracma_2.4.4 survival_3.7-0
[94] gargle_1.5.2 SingleCellExperiment_1.26.0 RcppHungarian_0.3
[97] RcppRoll_0.3.1 fitdistrplus_1.2-1 ROCR_1.0-11
[100] nlme_3.1-166 bit64_4.5.2 RcppAnnoy_0.0.22
[103] GenomeInfoDb_1.40.1 irlba_2.3.5.1 KernSmooth_2.23-24
[106] colorspace_2.1-1 seqLogo_1.70.0 BiocGenerics_0.50.0
[109] DBI_1.2.3 tidyselect_1.2.1 processx_3.8.4
[112] bit_4.5.0 compiler_4.4.1 curl_5.2.3
[115] desc_1.4.3 DelayedArray_0.30.1 plotly_4.10.4
[118] rtracklayer_1.64.0 scales_1.3.0 caTools_1.18.3
[121] lmtest_0.9-40 callr_3.7.6 rappdirs_0.3.3
[124] SpatialExperiment_1.14.0 stringr_1.5.1 digest_0.6.37
[127] goftest_1.2-3 spatstat.utils_3.1-0 XVector_0.44.0
[130] htmltools_0.5.8.1 pkgconfig_2.0.3 MatrixGenerics_1.16.0
[133] fastmap_1.2.0 ensembldb_2.28.1 rlang_1.1.4
[136] htmlwidgets_1.6.4 UCSC.utils_1.0.0 shiny_1.9.1
[139] farver_2.1.2 zoo_1.8-12 jsonlite_1.8.9
[142] mclust_6.1.1 BiocParallel_1.38.0 R.oo_1.26.0
[145] RCurl_1.98-1.16 magrittr_2.0.3 GenomeInfoDbData_1.2.12
[148] dotCall64_1.2 Rhdf5lib_1.26.0 munsell_0.5.1
[151] ape_5.8 reticulate_1.39.0 leidenAlg_1.1.3
[154] stringi_1.8.4 zlibbioc_1.50.0 MASS_7.3-61
[157] plyr_1.8.9 pkgbuild_1.4.4 parallel_4.4.1
[160] listenv_0.9.1 ggrepel_0.9.6 deldir_2.0-4
[163] CNEr_1.40.0 sccore_1.0.5 Biostrings_2.72.1
[166] splines_4.4.1 tensor_1.5 hms_1.1.3
[169] BSgenome.Hsapiens.UCSC.hg38_1.4.5 ps_1.8.0 igraph_2.0.3
[172] spatstat.geom_3.3-3 RcppHNSW_0.6.0 reshape2_1.4.4
[175] stats4_4.4.1 TFMPvalue_0.0.9 XML_3.99-0.17
[178] BiocManager_1.30.25 JASPAR2020_0.99.10 tzdb_0.4.0
[181] httpuv_1.6.15 RANN_2.6.2 tidyr_1.3.1
[184] purrr_1.0.2 polyclip_1.10-7 future_1.34.0
[187] SeuratData_0.2.2.9001 scattermore_1.2 rsvd_1.0.5
[190] xtable_1.8-4 restfulr_0.0.15 AnnotationFilter_1.28.0
[193] RSpectra_0.16-2 later_1.3.2 googledrive_2.1.1
[196] viridisLite_0.4.2 tibble_3.2.1 memoise_2.0.1
[199] AnnotationDbi_1.66.0 GenomicAlignments_1.40.0 IRanges_2.38.1
[202] cluster_2.1.6 globals_0.16.3

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant