-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhubbard-bethe.py
executable file
·184 lines (160 loc) · 5.8 KB
/
hubbard-bethe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
import numpy
from matplotlib import pyplot
import json
def solve(q, b, u, n_k=100, n_lambda=100):
"""
Solves Bethe ansatz for given parameters Q, B, see Lieb, Wu, Physica A: Statistical Mechanics and its Applications,
vol. 321, no. 1-2, pp. 1-27, Apr. 2003, section 4.
Args:
q (float): the wave number range;
b (float): the lambda range;
u (float): the Hubbard interaction term assuming the nearest heighbour hopping is equal to -1;
n_k (int): number of points to discretize k-integrations;
n_lambda (int): number of points to discretize lambda-integrations;
Returns:
A dict with all calculated quantities.
"""
def k_func(x):
"""The K function, Eq. 23"""
return 8 * u / (u ** 2 + 16 * x ** 2) / 2 / numpy.pi
def k2_func(x):
"""The K-squared function, Eq. 23. Note that is is not the same as the previous function squared."""
return 4 * u / (u ** 2 + 4 * x ** 2) / 2 / numpy.pi
# Discretize k and l(ambda)
k = numpy.linspace(-q, q, n_k, endpoint=False)
dk = k[1]-k[0]
l = numpy.linspace(-b, b, n_lambda)
dl = l[1]-l[0]
# Compose the linear system
# External variables k_i, l_i and integration parameters k_j, l_j
k_i = k[:, numpy.newaxis]
k_j = k[numpy.newaxis, :]
l_i = l[:, numpy.newaxis]
l_j = l[numpy.newaxis, :]
# Calculate discretized integrands and right-hand sides as a function of indexes i,j
# Eq. 22
integrand11 = numpy.eye(len(k))
integrand12 = - numpy.cos(k_i) * k_func(numpy.sin(k_i) - l_j) * dl
rhs1 = numpy.ones(len(k)) / 2 / numpy.pi
# Eq. 23
integrand21 = -k_func(numpy.sin(k_j) - l_i) * dk
integrand22 = numpy.eye(len(l)) + k2_func(l_i - l_j) * dl
rhs2 = numpy.zeros(len(l))
# Compose the linear system and solve it
A = numpy.block([[integrand11, integrand12], [integrand21, integrand22]])
b = numpy.concatenate((rhs1, rhs2))
x = numpy.linalg.solve(A, b)
# Decompose the solution into unknowns rho, sigma
rho = x[:len(k)]
sigma = x[len(k):]
# Calculate quantities
# Eq. 19
particles_per_site = sum(rho)*dk
spin_downs_per_site = sum(sigma)*dl
spin_ups_per_site = particles_per_site - spin_downs_per_site
magnetization = (spin_ups_per_site - spin_downs_per_site) / particles_per_site
# Eq. 25
energy = - 2*sum(rho*numpy.cos(k)) * dk
return dict(
energy=energy,
magnetization=magnetization,
particles_per_site=particles_per_site,
rho=rho,
sigma=sigma,
k=k,
l=l,
)
def batch(
u,
q_min=0.01,
q_max=numpy.pi,
nq=20,
b_min=0,
b_max=2,
nb=20,
collect=("energy", "magnetization", "particles_per_site"),
**kwargs
):
"""
Performs a batch calculation on a given range of parameters.
Args:
u (float): the Hubbard interaction term assuming the nearest heighbour hopping is equal to -1;
q_min (float): minimal value of Q;
q_max (float): maximal value of Q;
nq (int): number of points to discretize Q;
b_min (float): minimal value of B;
b_max (float): maximal value of B;
nb (int): number of points to discretize B;
collect (list, tuple): a list to quantities to calculate;
**kwargs: keyword arguments passed to `solve`.
Returns:
A tuple of calculated quantities as 2D arrays on the given grid of parameters.
"""
# Set the parameter grid
q_space = numpy.linspace(q_min, q_max, nq)
b_space = numpy.linspace(b_min, b_max, nb)
# Create a list of results
results = []
for _ in collect:
results.append([])
# Iterate
for q in q_space:
for r in results:
r.append([])
for b in b_space:
result = solve(q, b, u, **kwargs)
for r, name in zip(results, collect):
r[-1].append(result[name])
# Cast to numpy
return tuple(numpy.array(r) for r in results)
# Plot ground state energy as a function of particle density and magnetization for U=1
energy, magnetization, density = batch(1)
pyplot.figure(figsize=(12, 10))
pyplot.subplot(221)
pyplot.tripcolor(density.reshape(-1), magnetization.reshape(-1), energy.reshape(-1))
pyplot.colorbar().set_label("Energy density")
pyplot.xlabel("Particle density")
pyplot.ylabel("Magnetization")
pyplot.title("Calculated data on the grid")
pyplot.subplot(222)
pyplot.tricontourf(density.reshape(-1), magnetization.reshape(-1), energy.reshape(-1), 20)
pyplot.colorbar().set_label("Energy density")
pyplot.xlabel("Particle density")
pyplot.ylabel("Magnetization")
pyplot.title("Interpolated")
pyplot.subplot(223)
ax1 = pyplot.gca()
pyplot.subplot(224)
ax2 = pyplot.gca()
with open("plots.json", 'r') as f:
dataset = json.load(f)
# dataset = {}
for U in (1, 4, 8):
d = dataset[str(U)]
# energy, magnetization, density = batch(U, b_min=10, b_max=10, nb=1, nq=100, n_lambda=1000)
energy, magnetization, density = map(numpy.array, (d["energy"], d["magnetization"], d["density"]))
dEdn = numpy.diff(energy) / numpy.diff(density)
ddensity = (density[:-1] + density[1:]) / 2
ax1.plot(density, -energy, label="U={:d}".format(U))
ax2.plot(dEdn - U/2, ddensity, label="U={:d}".format(U))
dataset[U] = dict(
density=density.squeeze().tolist(),
energy=energy.squeeze().tolist(),
magnetization=magnetization.squeeze().tolist(),
)
ax1.set_xlim(0, 1)
ax2.set_xlim(right=0)
ax2.set_ylim(0, 1)
ax1.set_ylim(0, 1.2)
ax1.grid(ls="--")
ax2.grid(ls="--")
ax1.set_xlabel("Particle density")
ax2.set_xlabel("Chemical potential mu/t - U/2t")
ax1.set_ylabel("Energy per site -E/t")
ax2.set_ylabel("Particle density")
pyplot.legend()
pyplot.savefig('plot.png')
with open("plots.json", 'w') as f:
json.dump(dataset, f)
pyplot.show()