-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
32 lines (27 loc) · 855 Bytes
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# make a prediciton for a new image
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model
# load and prepare the image
def load_image(filename):
# load the image
img = load_img(filename, target_size=(224,224))
# convert to array
img = img_to_array(img)
# reshape into a single sample with 3 channels
img = img.reshape(1,224,224,3)
# center pixel data
img = img.astype('float32')
img = img - [123.68, 116.779, 103.939]
return img
#load an image and predict the class
def run_example():
# load the image
img = load_image('sample_image.jpg')
#load model
model = load_model('final_model.h5')
# predict the class
result = model.predict(img)
print(result[0])
# entry point, run the example
run_example()