-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
103 lines (74 loc) · 2.98 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
# Library for creating interactive interfaces
import gradio as gr
from api import openai, api_request
from api_key import openai_api_key
from file_handler import read
# If the OpenAI API key is stored as an environment variable, retrieve it.
# openai.api_key = os.getenv("OPENAI_API_KEY")
# If the OpenAI API key is stored as a string, use it directly
openai.api_key = openai_api_key
# String to signal the start of an AI's response in the conversation history
start_sequence = "\nE.C.H.O: "
# String to signal the start of a human's response in the conversation history
restart_sequence = "\nYou: "
# Initial prompt to start the conversation
prompt = read("initial.txt")
# Calling the `api_request` function with the `prompt` string as an argument.
api_request(prompt)
def chat_brain(input, history):
"""
It takes an input and a history, and returns the updated history
:param input: The latest input from the user
:param history: The conversation history, which is a list of input-output pairs
:return: The history is being returned.
"""
# Initialize the history if it is not provided
history = history or []
# Flatten the history into a list of input-output pairs
s = list(sum(history, ()))
# Append the latest input to the list
s.append(input)
# Join the input-output pairs into a single string
inp = " ".join(s)
# Generate a response from the OpenAI API
output = api_request(inp)
# Append the input-output pair to the conversation history
history.append((input, output))
# Return the updated conversation history
return history, history
# Create the interface using gradio's Blocks API
block = gr.Blocks()
block.title = "E.C.H.O"
with block:
# Add a title
gr.Markdown(
"""<h1><center>Enhanced Chats and Helpful Outputs</center></h1>
"""
)
# Add a chatbot component to display the conversation history
chatbot = gr.Chatbot()
# Add a textbox for the user to enter their message
message = gr.Textbox(placeholder=prompt, label="You", lines=3)
# Add a state component to store the conversation history
state = gr.State()
# Add a button to send the message
submit = gr.Button("SEND")
# Bind the button's click event to the chat_brain function The function
# will be called with the user's message and the conversation history as
# inputs The function will return the updated conversation history and
# the chatbot component
submit.click(chat_brain, inputs=[message, state], outputs=[chatbot, state])
gr.Markdown(
"""<center>Created by <a href="https://twitter.com/ralphcode">Ralph Cajipe</a> 2022 <br>
<a href="https://github.com/ralphcajipe">GitHub</a>
</center> """
)
def main():
"""It launches the interface."""
block.launch(
debug=True,
show_api=False,
)
if __name__ == "__main__":
main()