-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHarmoniac.py
444 lines (356 loc) · 17.3 KB
/
Harmoniac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import re
import time
import google.generativeai as genai
import numpy as np
import pandas as pd
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
import warnings
from unidecode import unidecode
import tkinter as tk
from tkinter import scrolledtext
import matplotlib.pyplot as plt
def normalize_text(text):
text = unidecode(text) # convert accented characters to ASCII
text = text.lower() # convert to lowercase
text = re.sub(r'\(.*?\)', '', text) # remove text in parentheses
text = re.sub(r'[^a-z0-9\s]', '', text) # remove non-alphanumeric characters (except spaces)
text = re.sub(r'\s+', ' ', text).strip() # normalize whitespace
return text
# suppress non-critical warnings:
warnings.filterwarnings("ignore")
# configure Gemini:
genai.configure(api_key="AIzaSyDh37esnX-KiysJhqx9P1OeWGUw67xjNh8")
# to extract artist name using LLM:
def extract_artist_name(user_input):
model = genai.GenerativeModel("gemini-1.5-flash-8b")
response = model.generate_content(f"Extract the artist's name from this user input: '{user_input}'. "
f"If it looks a lot like a popular musician you know of, please extract the "
f"corrected version. DO NOT say anything but the artist name (but if it looks "
f"misspelled, please correct it).")
# clean response:
clean_artist_name = response.text.strip()
return clean_artist_name
# to generate natural language examples using LLM:
def generate_song_examples(artist, song_list):
model = genai.GenerativeModel("gemini-1.5-flash-8b")
response = model.generate_content(
f"Here are some songs by {artist}: {', '.join(song_list[:5])}. Format this nicely to display to the user in a "
f"numbered list. Just the list of songs.")
return response.text
# generate recommendations using LLM:
def generate_explanation(selected_song, recommendations):
# convert recommendations to a formatted string:
recommendation_list = "\n".join(
[f"{i+1}. {row['track_name']} by {row['artists']}" for i, row in recommendations.iterrows()]
)
# LLM prompt:
prompt = (
f"The user selected the song '{selected_song['track_name']}' by {selected_song['artists']}. "
f"Here are some recommended songs based on their choice:\n{recommendation_list}\n"
"Write a paragraph explaining how each song is similar musically to the user's selected song (just a paragraph "
"- do not list them). "
"Use outside knowledge about the songs when possible."
)
# generate response:
model = genai.GenerativeModel("gemini-1.5-flash-8b")
response = model.generate_content(prompt)
'''
# use textwrap to format the output for IDE output (for use without GUI):
wrapped_response = textwrap.fill(response.text, width=80)
return wrapped_response
'''
return response.text
# load & preprocess data:
def load_and_preprocess_data(file_path):
data = pd.read_csv(file_path)
# remove duplicate tracks by name & artist:
data = data.drop_duplicates(subset=['track_name', 'artists'])
# exclude specific genres:
excluded_genres = ['brazil', 'turkish', 'malay', 'anime', 'iranian', 'sleep', 'kids', 'latin', 'french', 'tango',
'study', 'indian', 'children', 'pop-film', 'j-pop', 'j-dance', 'cantopop', 'mandopop', 'disney']
data = data[~data['track_genre'].isin(excluded_genres)]
# keep only relevant features & drop rows w/ missing values:
features = [
'danceability', 'energy', 'loudness', 'speechiness', 'acousticness',
'instrumentalness', 'liveness', 'valence', 'tempo'
]
data = data.dropna(subset=features)
data.reset_index(drop=True, inplace=True)
return data, features
# to scale features:
def scale_features(data, feature_columns):
scaler = MinMaxScaler()
scaled_features = scaler.fit_transform(data[feature_columns])
scaled_data = pd.DataFrame(scaled_features, columns=feature_columns)
return scaled_data, scaler
# determine optimal num of clusters using elbow method:
def find_optimal_clusters(data, max_clusters=15):
inertias = []
for k in range(1, max_clusters + 1):
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(data)
inertias.append(kmeans.inertia_)
'''
# plot elbow curve:
plt.figure(figsize=(8, 6))
plt.plot(range(1, max_clusters + 1), inertias, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('Elbow Method for Optimal k')
plt.show()
'''
return inertias
# to detect elbow point:
def find_elbow_point(inertias):
deltas = np.diff(inertias)
second_deltas = np.diff(deltas)
elbow_point = np.argmin(second_deltas) + 1 # +1 because of index shift
return elbow_point
# makes K-means recommendations:
def kmeans_recommend_songs(selected_title, user_input_features, data, scaled_data, scaler, pca, kmeans, n_recommendations=5):
user_input_df = pd.DataFrame([user_input_features], columns=scaled_data.columns)
user_scaled = scaler.transform(user_input_df)
user_pca = pca.transform(user_scaled)
cluster_label = kmeans.predict(user_pca)[0]
# filter songs from same cluster:
cluster_songs = data[data['Cluster'] == cluster_label]
# compute similarity w/in cluster:
cluster_songs['Similarity'] = cosine_similarity(user_input_df, cluster_songs[scaled_data.columns])[0]
# ensure selected_title is normalized (for consistency) & filter songs:
if selected_title:
selected_title_normalized = normalize_text(selected_title)
cluster_songs = cluster_songs[
~cluster_songs['track_name'].fillna('').apply(normalize_text).str.contains(selected_title_normalized, case=False)
]
# sort by similarity & return top recommendations:
recommendations = cluster_songs.sort_values(by='Similarity', ascending=False).head(n_recommendations)
return recommendations
# make content-based recommendations:
def content_based_recommend_songs(user_input_features, data, feature_columns, selected_song, n_recommendations=5):
user_input_df = pd.DataFrame([user_input_features], columns=feature_columns)
similarities = cosine_similarity(user_input_df, data[feature_columns])
data['Similarity'] = similarities[0]
# normalize selected song title for filtering:
selected_title_normalized = normalize_text(selected_song['track_name'])
# filter out songs that have identical or overlapping titles:
data = data[
~data['track_name'].apply(lambda x: selected_title_normalized in normalize_text(x))
]
# exclude user-selected song:
recommendations = data[data['track_name'] != selected_song['track_name']].sort_values(by='Similarity', ascending=False).head(n_recommendations)
return recommendations
# evaluate MRR:
def evaluate_mrr(recommendations, selected_song, feature_columns):
selected_features = selected_song[feature_columns].values.reshape(1, -1)
similarities = cosine_similarity(selected_features, recommendations[feature_columns])
recommendations['Similarity'] = similarities[0]
recommendations = recommendations.sort_values(by='Similarity', ascending=False)
for rank, (_, row) in enumerate(recommendations.iterrows(), start=1):
if row['Similarity'] > 0.8: # threshold for relevance
return 1 / rank
return 0 # no relevant recommendations
# compute diversity:
def compute_diversity(recommendations, feature_columns):
features = recommendations[feature_columns].values
pairwise_distances = cosine_similarity(features)
diversity = 1 - pairwise_distances.mean()
return diversity
class ChatInterface:
def __init__(self, root, data, scaled_data, scaler, pca, kmeans, feature_columns):
self.root = root
self.data = data
self.scaled_data = scaled_data
self.scaler = scaler
self.pca = pca
self.kmeans = kmeans
self.feature_columns = feature_columns
# set up window:
self.root.title("Harmoniac")
self.root.geometry("600x600")
# chat display:
self.chat_display = scrolledtext.ScrolledText(self.root, wrap=tk.WORD, state='disabled', height=25, width=70)
self.chat_display.pack(pady=10)
# user input area:
self.user_input = tk.Entry(self.root, width=60)
self.user_input.pack(pady=5)
self.user_input.bind("<Return>", self.process_input)
# send button:
self.send_button = tk.Button(self.root, text="Send", command=self.send_input)
self.send_button.pack()
# start conversation:
self.add_message("Welcome! I'm here to help you find new music similar to what you already enjoy. Tell me an artist you like, or you can type 'quit' to exit.", sender="System")
# tracks context for user input:
self.awaiting_response = None
def add_message(self, message, sender="User"):
self.chat_display.configure(state='normal')
if sender == "User":
self.chat_display.insert(tk.END, f"\nYou: {message}\n")
else:
self.chat_display.insert(tk.END, f"\n{message}\n")
self.chat_display.configure(state='disabled')
self.chat_display.yview(tk.END)
def process_input(self, event=None):
user_message = self.user_input.get().strip()
if user_message:
self.add_message(user_message, sender="User")
self.user_input.delete(0, tk.END)
if self.awaiting_response:
self.awaiting_response(user_message)
else:
self.handle_user_message(user_message)
def send_input(self):
self.process_input()
def handle_user_message(self, message):
if message.lower() == "quit":
self.add_message("Goodbye!", sender="System")
time.sleep(1)
self.root.quit()
return
corrected_artist = extract_artist_name(message)
artist_songs = self.data[self.data['artists'].str.contains(corrected_artist, case=False, na=False)]
if artist_songs.empty:
self.add_message(f"Sorry, no songs found for '{corrected_artist}' in the dataset. Is there another "
f"you'd like me to look for?", sender="System")
return
self.add_message(f"Okay, here are some songs by {corrected_artist}:", sender="System")
song_list = artist_songs['track_name'].tolist()
response = generate_song_examples(corrected_artist, song_list)
self.add_message(response, sender="System")
self.add_message("Enter the number of a song for recommendations:", sender="System")
self.awaiting_response = lambda song_choice: self.handle_song_choice(song_choice, artist_songs, song_list)
def handle_song_choice(self, song_choice, artist_songs, song_list):
try:
song_choice = int(song_choice)
if song_choice < 1 or song_choice > len(song_list):
self.add_message("Invalid selection. Try again.", sender="System")
return
except ValueError:
self.add_message("Invalid input. Please enter a number.", sender="System")
return
selected_song = artist_songs.iloc[song_choice - 1]
user_input_features = selected_song[self.feature_columns].values
self.add_message(f"Okay, I'll recommend you songs musically similar to \"{selected_song['track_name']}.\"", sender="System")
self.add_message("Please choose a recommendation method (1 for K-means, 2 for Content-based):", sender="System")
self.awaiting_response = lambda method_choice: self.handle_method_choice(method_choice, selected_song, user_input_features)
def handle_method_choice(self, method_choice, selected_song, user_input_features):
if method_choice == "1":
recommendations = kmeans_recommend_songs(
selected_title=selected_song['track_name'],
user_input_features=user_input_features,
data=self.data,
scaled_data=self.scaled_data,
scaler=self.scaler,
pca=self.pca,
kmeans=self.kmeans,
n_recommendations=5
)
elif method_choice == "2":
recommendations = content_based_recommend_songs(
user_input_features, self.data, self.feature_columns, selected_song
)
else:
self.add_message("Invalid method choice. Please choose again.", sender="System")
return
# format & display recommendations:
self.add_message("\nMy recommendations:", sender="System")
for _, row in recommendations.iterrows():
# replace ";" with "and" in the 'artists' column for display:
artists_cleaned = row['artists'].replace(';', ' and ')
formatted_recommendation = f"- {row['track_name']} by {artists_cleaned} ({row['track_genre']})"
self.add_message(formatted_recommendation, sender="System")
# generate & display explanation:
explanation = generate_explanation(selected_song, recommendations)
self.add_message("\nWhy you'll like these:", sender="System")
self.add_message(explanation, sender="System")
# compute + display MRR & diversity:
mrr = evaluate_mrr(recommendations, selected_song, self.feature_columns)
diversity = compute_diversity(recommendations, self.feature_columns)
if mrr >= 0.7:
print(f"\nThe MMR score of {mrr:.2f} means these songs are very musically similar to {selected_song['track_name']}.")
if diversity <= 0.3:
print(f"The diversity of these songs is {diversity:.2f}, meaning they are very similar to each other.")
# offer choice to restart or exit:
self.add_message("\nWould you like to start with a new artist or quit? Type 'new artist' or 'quit'.",
sender="System")
self.awaiting_response = self.restart_or_exit
def restart_or_exit(self, choice):
if choice.lower() == "new artist":
self.add_message("Sounds good! What other artist do you want to find music similar to?", sender="System")
self.awaiting_response = None
elif choice.lower() == "quit":
self.add_message("Goodbye!", sender="System")
time.sleep(1)
self.root.quit()
else:
self.add_message("Invalid input. Please type 'new artist' or 'quit'.", sender="System")
def main():
file_path = '../fall '
data, feature_columns = load_and_preprocess_data(file_path)
scaled_data, scaler = scale_features(data, feature_columns)
# Apply PCA (calculate all components)
pca = PCA(n_components=5)
pca.fit(scaled_data)
pca_data = pca.fit_transform(scaled_data)
'''
# Plot explained variance ratio
plt.figure(figsize=(8, 6))
plt.plot(
np.cumsum(pca.explained_variance_ratio_),
marker='o',
linestyle='--',
label='Cumulative Explained Variance'
)
plt.xlabel('Number of Principal Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('PCA Explained Variance')
plt.axhline(y=0.9, color='r', linestyle='--', label='90% Variance Threshold')
plt.legend()
plt.show()
# Dynamically set n_components based on 90% variance
n_components = np.argmax(np.cumsum(pca.explained_variance_ratio_) >= 0.9) + 1
pca = PCA(n_components=n_components)
pca_data = pca.fit_transform(scaled_data)
print(f"Number of components selected to retain 90% variance: {n_components}")
# Find optimal number of clusters using the elbow method
max_clusters = 40
inertias = find_optimal_clusters(pca_data, max_clusters=max_clusters)
optimal_k_elbow = find_elbow_point(inertias)
print(f"The optimal number of clusters based on the elbow method: {optimal_k_elbow}")
# Compute silhouette scores for different cluster counts
silhouette_scores = []
for k in range(2, 10):
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(pca_data)
score = silhouette_score(pca_data, kmeans.labels_)
silhouette_scores.append(score)
# Plot silhouette scores
plt.figure(figsize=(8, 6))
plt.plot(range(2, 10), silhouette_scores, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Analysis for Optimal k')
plt.show()
# Determine best number of clusters based on silhouette analysis
best_k_silhouette = np.argmax(silhouette_scores) + 2
print(f"The best number of clusters based on silhouette analysis: {best_k_silhouette}")
# Use elbow method
optimal_k = optimal_k_elbow
print(f"Using optimal number of clusters: {optimal_k}")
'''
# Fit KMeans with optimal number of clusters
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(pca_data)
data['Cluster'] = kmeans.labels_
# Launch GUI
try:
root = tk.Tk()
ChatInterface(root, data, scaled_data, scaler, pca, kmeans, feature_columns)
root.mainloop()
except Exception as e:
print(f"An error occurred while launching the GUI: {e}")
if __name__ == "__main__":
main()