-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchampagne-tower.rs
76 lines (74 loc) · 2.46 KB
/
champagne-tower.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// 799. Champagne Tower
// 🟠 Medium
//
// https://leetcode.com/problems/champagne-tower/
//
// Tags: Dynamic Programming
struct Solution;
impl Solution {
/// Iterate over n rows computing how much liquid falls into each glass and
/// storing in a dp vector how much of it will overflow into the row below.
///
/// Time complexity: O(n^2) - We iterate over n rows, each row has row_idx
/// plus one items, for each item, we compute the amount that it overflows
/// from it checking the two glasses above it.
/// Space complexity: O(n) - We use two rows of length n of extra memory.
///
/// Runtime 0 ms Beats 100%
/// Memory 2.04 MB Beats 100%
pub fn champagne_tower(poured: i32, query_row: i32, query_glass: i32) -> f64 {
let n = query_row as usize;
if n == 0 {
return 1.min(0.max(poured)) as f64;
}
let mut dp = vec![0.0; n + 1];
let mut prev = dp.clone();
prev[0] = 0f64.max(poured as f64 - 1.0);
// Check whether we have no overflows from the previous row and stop
// iterating, the code passes the tests without this, but this flag
// makes it faster.
let mut no_overflows;
// Compute overflows for all rows before the last one.
for r in 1..n {
no_overflows = true;
dp[0] = 0f64.max((prev[0] / 2.0) - 1.0);
if dp[0] > 0.0 {
no_overflows = false;
}
for c in 1..r {
dp[c] = 0f64.max((prev[c - 1] / 2.0 + prev[c] / 2.0) - 1.0);
if dp[c] > 0.0 {
no_overflows = false;
}
}
if no_overflows && r < n - 1 {
return 0.0;
}
dp[r] = 0f64.max(prev[r - 1] / 2.0 - 1.0);
std::mem::swap(&mut dp, &mut prev);
}
let glass = query_glass as usize;
1f64.min(if glass == 0 {
0f64.max(prev[glass] / 2.0)
} else if glass == n {
0f64.max(prev[glass - 1] / 2.0)
} else {
0f64.max(prev[glass - 1] / 2.0 + prev[glass] / 2.0)
})
}
}
// Tests.
fn main() {
let tests = [
(1, 0, 0, 1.0),
(2, 1, 0, 0.5),
(1, 1, 1, 0.0),
(2, 1, 1, 0.5),
(4, 2, 0, 0.25),
(100000009, 33, 17, 1.0),
];
for t in tests {
assert_eq!(Solution::champagne_tower(t.0, t.1, t.2), t.3);
}
println!("\x1b[92m» All tests passed!\x1b[0m")
}