-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathn-th-tribonacci-number.py
59 lines (52 loc) · 1.62 KB
/
n-th-tribonacci-number.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# 1137. N-th Tribonacci Number
# 🟢 Easy
#
# https://leetcode.com/problems/n-th-tribonacci-number/
#
# Tags: Math - Dynamic Programming - Memoization
import timeit
# Use three variables initialized to the three initial tribonacci values,
# iterate over 3..n values computing the sum of the current three
# variables, discarding the lowest one and adding the sum as the third
# value. The result will be that sum at the last iteration.
#
# Time complexity: O(n) - The loop executes n-2 times.
# Space complexity: O(1) - Constant space used.
#
# Runtime 31 ms Beats 76.51%
# Memory 13.8 MB Beats 54.1%
class Solution:
def tribonacci(self, n: int) -> int:
if not n:
return 0
a, b, c = 0, 1, 1
for _ in range(n - 2):
a, b, c = b, c, a + b + c
return c
def test():
executors = [Solution]
tests = [
[0, 0],
[1, 1],
[2, 1],
[3, 2],
[25, 1389537],
[37, 2082876103],
]
for executor in executors:
start = timeit.default_timer()
for _ in range(1):
for col, t in enumerate(tests):
sol = executor()
result = sol.tribonacci(t[0])
exp = t[1]
assert result == exp, (
f"\033[93m» {result} <> {exp}\033[91m for"
+ f" test {col} using \033[1m{executor.__name__}"
)
stop = timeit.default_timer()
used = str(round(stop - start, 5))
cols = "{0:20}{1:10}{2:10}"
res = cols.format(executor.__name__, used, "seconds")
print(f"\033[92m» {res}\033[0m")
test()