-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathairware_svm.py
131 lines (116 loc) · 5.15 KB
/
airware_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from utils.baseline_model_helper import *
from utils.generate_report import *
import argparse
MODEL_PATH = "./baseline_models/svm/"
CV_FOLDS = 5
def run_gridSearch_svm(cv_strategy=None):
start = time.time()
# Number of principle components for Masked PCA
n_components_range = [100, 200]
# C trades off misclassification of training examples against simplicity of the decision surface.
# Higher C selects more samples as support vectors
c_range = np.logspace(-3, 3, 7)
# gamma defines how far the influence of a single training example reaches; low==far.
# Inverse of the radius of influence of samples selected by the model as support vectors
gamma_range = np.logspace(-3, 3, 7)
kernel_options = ['rbf', 'linear']
x, y, user, lab_enc = airware_baseline_data()
# Delete near zero variance columns
nz_var_ind = remove_near_zero_var(x, thresh=20)
x = np.delete(x, nz_var_ind, axis=1)
# Create a mask for PCA only on doppler signature
mask = np.arange(x.shape[1]) < x.shape[1] - 2
param_grid = [
{
'reduce_dim__n_components': n_components_range,
'reduce_dim__mask': [mask],
'classify__C': c_range,
'classify__kernel': kernel_options,
'classify__gamma': gamma_range,
'classify__class_weight': ['balanced']
}
]
clf_obj = SVC()
grid_search_best_estimator = gridSearch_clf(x=x, y=y, groups=user, clf=clf_obj, param_grid=param_grid,
file_path=MODEL_PATH)
print('It took ', time.time() - start, ' seconds.')
return grid_search_best_estimator
def eval_svm_doppler(cv_strategy='loso'):
start = time.time()
svm_clf_params = {'classify__gamma': 1.0,
'classify__C': 10,
'classify__class_weight': 'balanced',
'reduce_dim__n_components': 100}
pipe = Pipeline([
('normalize', StandardScaler()),
('reduce_dim', PCA()),
('classify', SVC())
])
if cv_strategy == 'loso':
print("SVM with Leave One Subject CV - Doppler")
train_clf_doppler(pipe, svm_clf_params, MODEL_PATH + "/doppler/")
print('It took ', time.time() - start, ' seconds.')
else:
raise ValueError("Cross-validation strategy not defined")
def eval_svm_ir(cv_strategy='loso'):
start = time.time()
svm_clf_params = {'classify__gamma': 1.0,
'classify__C': 10.0,
'classify__class_weight': 'balanced'}
pipe = Pipeline([
('normalize', StandardScaler()),
('classify', SVC())
])
if cv_strategy == 'loso':
print("SVM with Leave One Subject CV - IR")
train_clf_ir(pipe, svm_clf_params, MODEL_PATH + "/ir/")
print('It took ', time.time() - start, ' seconds.')
else:
raise ValueError("Cross-validation strategy not defined")
def eval_svm(cv_strategy='loso'):
start = time.time()
svm_clf_params = joblib.load(MODEL_PATH + "clf_gridsearch.pkl")
pipe = Pipeline([
('normalize', StandardScaler()),
('reduce_dim', MaskedPCA()),
('classify', SVC())
])
if cv_strategy == 'loso':
print("SVM with Leave One Subject CV")
train_clf_loso(pipe, svm_clf_params, MODEL_PATH + "leave_one_subject/svm")
print('It took ', time.time() - start, ' seconds.')
elif cv_strategy == 'personalized':
print("SVM with Personalized CV")
train_clf_personalized(pipe, svm_clf_params, MODEL_PATH + "personalized/svm")
print('It took ', time.time() - start, ' seconds.')
elif cv_strategy == 'user_calibrated':
print("SVM with User Calibrated CV")
train_size_percent = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
for train_size in train_size_percent:
train_clf_user_calibrated(pipe, svm_clf_params, train_size,
MODEL_PATH + "user_calibrated/svm" + str(train_size))
print('It took ', time.time() - start, ' seconds.')
else:
raise ValueError("Cross-validation strategy not defined")
if __name__ == '__main__':
function_map = {'gridSearch': run_gridSearch_svm,
'eval_svm': eval_svm,
'eval_svm_doppler':eval_svm_doppler,
'eval_svm_ir':eval_svm_ir}
parser = argparse.ArgumentParser(
description="AirWare SVM grid search and train model using different CV strategies")
# "?" one argument consumed from the command line and produced as a single item
# Positional arguments
parser.add_argument('-model_strategy',
help="Define function to run for SVM",
choices=['gridSearch', 'eval_svm', 'eval_svm_doppler', 'eval_svm_ir'],
default='eval_svm')
parser.add_argument('-cv_strategy',
help="Define cross-validation strategy",
choices=['loso', 'personalized', 'user_calibrated'],
default=None)
args = parser.parse_args()
function = function_map[args.model_strategy]
function(args.cv_strategy)