-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday18.cpp
executable file
·152 lines (119 loc) · 3.17 KB
/
day18.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// [Day 18: RAM Run](https://adventofcode.com/2024/day/18)
#include <vector>
#include <deque>
#include <tuple>
#include <cstdio>
#define MEM_SIZE 71
struct point_t
{
int x;
int y;
};
static bool operator==(const point_t &a, const point_t &b)
{
return a.x == b.x && a.y == b.y;
}
typedef std::vector<point_t> positions_t;
enum byte_t
{
SAFE = 0,
CORRUPTED = 1,
};
static const point_t directions[] = {
{0, 1}, // down
{0, -1}, // up
{1, 0}, // right
{-1, 0}}; // left
static unsigned find_path(const std::vector<byte_t> &memory)
{
std::deque<std::tuple<point_t, unsigned>> queue;
std::vector<bool> seen(MEM_SIZE * MEM_SIZE, false);
const point_t start_pos = {0, 0};
const point_t end_pos = {MEM_SIZE - 1, MEM_SIZE - 1};
queue.push_back(std::make_tuple(start_pos, 0));
while (queue.empty() == false)
{
point_t pos;
int steps;
std::tie(pos, steps) = queue.front();
queue.pop_front();
if (pos == end_pos)
{
return steps;
}
seen[pos.y * MEM_SIZE + pos.x] = true;
for (const auto &dir : directions)
{
const int x = pos.x + dir.x;
const int y = pos.y + dir.y;
if (x < 0 || x >= MEM_SIZE || y < 0 || y >= MEM_SIZE)
{
continue;
}
if (!seen[y * MEM_SIZE + x] && memory[y * MEM_SIZE + x] == byte_t::SAFE)
{
queue.push_back(std::make_tuple(point_t{x, y}, steps + 1));
seen[y * MEM_SIZE + x] = true;
}
}
}
return 0;
}
static void part1(const positions_t &byte_positions)
{
std::vector<byte_t> memory(MEM_SIZE * MEM_SIZE, byte_t::SAFE);
int count = 0;
for (const auto &pos : byte_positions)
{
memory[pos.y * MEM_SIZE + pos.x] = byte_t::CORRUPTED;
count++;
if (count == 1024)
{
break;
}
}
printf("%u\n", find_path(memory));
}
static void part2(const positions_t &byte_positions)
{
std::vector<byte_t> memory(MEM_SIZE * MEM_SIZE, byte_t::SAFE);
for (const auto &pos : byte_positions)
{
memory[pos.y * MEM_SIZE + pos.x] = byte_t::CORRUPTED;
if (memory[0] == byte_t::CORRUPTED // start position
|| memory[MEM_SIZE * MEM_SIZE - 1] == byte_t::CORRUPTED // end position
|| find_path(memory) == 0) // no more path
{
printf("%d,%d\n", pos.x, pos.y);
return;
}
}
}
static positions_t read_input(const char *filename)
{
FILE *f;
int x, y;
positions_t byte_positions;
f = fopen(filename, "r");
if (f != NULL)
{
while (fscanf(f, "%d,%d\n", &x, &y) == 2)
{
byte_positions.push_back(point_t{x, y});
}
fclose(f);
}
return byte_positions;
}
int main(int argc, char *argv[])
{
const char *filename = "input.txt";
if (argc > 1 && argv[1] != NULL)
{
filename = argv[1];
}
const positions_t &&byte_positions = read_input(filename);
part1(byte_positions);
part2(byte_positions);
return 0;
}